E Appendix: Analytical Results for Higher Moments

Higher moments of the distribution, defined as $H_n(t) = \sum_m m^n F(m,t)$, for $n \geq 2$ in the extended model satisfy the following differential equation:

$$G(t) \frac{\partial H_n}{\partial t} = RG(t) + \sum_{m=1}^{\infty} F(m) [m(m+1)^n - (1 + Q)m^{n+1} + Q(m - 1)^n m]$$ \hspace{1cm} (44)

In particular, the equations for the second and third moment are:

$$G(t) \frac{\partial H_2}{\partial t} = RG(t) + 2(1 - Q)H_2(t) + (1 + Q)G(t)$$ \hspace{1cm} (45)

$$G(t) \frac{\partial H_3}{\partial t} = RG(t) + 3(1 - Q)H_3(t) + 3(1 + Q)3H_2(t) + (1 - Q)G(t)$$ \hspace{1cm} (46)

Higher moments depend on all lower moments except for the zeroth moment, the expected number of folds $F(t)$ This is fortuitous, since equation 11 for $F(t)$ could not be solved analytically due to its explicit dependence on the population of smallest folds: $F(1,t)$.

The solution for the second moment is given by:

$$H_2(t) = \begin{cases} N_0 \exp \left(\frac{2(1 - Q)}{R + R - Q} u(t) \right) + \frac{1 + R + Q}{N_0} \left[\exp u(t) - \exp \left(\frac{2(1 - Q)}{R + R - Q} u(t) \right) \right] & R \neq 1 - Q \\ N_0 \exp (u(t)) \left[1 + \frac{u(t)}{2R} \right] & R = 1 - Q \end{cases}$$ \hspace{1cm} (47)

where the variable $u(t)$ is related to the expected number of genes:

$$u(t) = \log \left[1 + \frac{(R + 1 - Q)t}{N_0} \right]$$ \hspace{1cm} (48)

This result will be important in fitting actual genomic data to the models.