C Appendix: Arbitrary Initial Distribution

The solution for an arbitrary initial distribution: $N_{init}(m)$, requires solving (22) subject to different boundary conditions at $t = 0$; the terms proportional to A_m are the same, the term proportional to N_0 is replaced by the superposition of new terms describing the propagation of each bin of initial histogram:

$$F(m, t) = \sum_{i=1}^{\infty} N_{init}(i) \psi_i(m, t) + A_m(\phi - \phi^{-\frac{m}{i+\pi}}) - \sum_{i=1}^{m-1} A_i \psi_i(m, t)$$

$$\psi_i(m, t) = \begin{cases} 0 & \text{if } m < i \\ \beta_i^{i-\frac{m}{i+\pi}} (1 - \phi^{-\frac{m}{i+\pi}})^{m-i} & \text{for } m \geq i \end{cases}$$ (35)

with the same definitions for A_{m} and β_{m}^{i} as before. These are derived by following by successive integration in the same way as was done in Appendix A.

The fact that $\psi_i(m, t) = 0$ for $m < i$ reflects the fact that there is no gene deletion; genes that start in bin i may either stay put or advance to bins corresponding to larger fold sizes, but will never populate bins of fold size less than i.

One important conclusion may be drawn from the full solution: all initial distributions ultimately lead to the the same limiting distribution determined by the A_m. Just as before, the dependence on the initial fold distribution $N_{init}(m)$ decays with time, leading to the same asymptotic distribution as was found for an initial distribution of N_0 folds of size 1 in (9). Of course, the details of how the crossover happens will depend on the particular form of $N_{init}(m)$.

24