MATHEMATICAL RECREATIONS

by [an Stewart

Cementing Relationships

he prestigious journal Nature

manages to combine high-

powered research papers with
eclectic science writing. One of its regu-
lar columns is Art and Science, whose
name pretty much speaks for itself. In
the December 11, 1997, issue, art histo-
rian Martin Kemp describes the re-
markable landscapes of a London artist
named Jonathan Callan. Unlike con-
ventional landscape art, Callan’s works
are sculptures, not paintings. And his
landscapes are unlike anything seen on
carth or indeed on any known world.
They are three-dimensional forms cre-
ated by pouring cement onto a perfo-
rated board.

Kemp, a professor in the University of
Oxford’s art history department, notes
a relationship between Callan’s sculp-
tures and recent work in the field of
complexity theory. Certain general prin-
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ciples seem to govern Callan’s fantastic
landscapes—for instance, the highest
peaks of cement occur in the regions
farthest from the holes. In a letter to the
editor in a later issue of Nature (Janu-
ary 29, 1998), Adrian Webster, an as-
tronomer at the Royal Observatory in
Edinburgh, points out that the curious
geometry of Callan’s landscapes can be
understood using a more classical
branch of mathematics, the theory of
Voronoi cells. He also explains how
Voronoi cells illustrate one of the major
recent discoveries of astronomy, the
foamlike distribution of matter in the
universe. If ever there was an example
of the unity of mathematics, art and sci-
ence, this has to be it.

Since the very first cave paintings, art-
ists have relied on processes from phys-
ics and chemistry to create their master-
pieces. In ancient Greece and Rome,
sculptors had to understand how stones
fractured and how molten bronze
flowed into a cast. Renaissance painters
studied the properties of pigments. The
traditional artist’s technique has been to
control these physical processes, using
them to shape sculptures and paintings
in desired ways. Callan is one of a
smaller band of modern artists who re-
linquish that control. They allow the
physical and chemical processes of their
media to determine the main features of
their artworks.

Callan begins each sculpture by drill-
ing a random pattern of holes into a
horizontal board. He then sieves ce-
ment powder evenly over the surface.
Some cement falls through the holes,
and some piles up in the areas between
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them. The sculpture hardens by absorb-
ing moisture from the air. The final re-
sult resembles a moonscape, with jag-
ged peaks surrounding steep craters.
Callan compares the sculpture to an
earthly mountain range: “A geography
that seems both eminently natural and
highly artificial—the Alps brand new.”

A more apt comparison might liken
Callan’s artworks to a collection of
sandpiles. Civil engineers have long
been familiar with how granular mate-
rials—such as sand, soil or cement pow-
der—pile up. The simplest and most im-
portant feature is the existence of a
“critical angle.” Depending on the na-
ture of the granular material, there is a
steepest slope that it can sustain with-
out collapsing. This slope runs at a con-
stant angle with the ground—the criti-
cal angle. If you keep piling sand higher
and higher—say, by pouring it in a thin
stream—the slope of the sandpile will
steepen until it reaches the critical angle.
Any extra sand will then trickle down
the pile, causing either a tiny avalanche
or a big one, to restore the constant
slope. The resulting steady-state shape,
in this simplest model, is a cone whose
sides slope at exactly the critical angle.

Complexity theorists study the pro-
cess by which the slope attains this
shape and the nature of the avalanches,
big or small, that accompany its growth.
Danish physicist Per Bak coined the term
“self-organized criticality” for such
processes, and he has suggested that
they model many important features of
the natural world, especially evolution
(where the avalanches involve not grains
of sand but entire species, and the piles
are in an imaginary space of potential
organisms).

In Callan’s artworks, the structure of

JAGGED CRATERS
pock the surface of one of
/ Jonathan Callan’s cement

sculptures (far left). The sides

of each crater slope at the
same angle as the sides
of a conical pile of cement
powder (left).
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VORONOI CELLS can be sketched
by drawing the perpendicular bisectors
of the lines between the holes.

cement powder around each hole is an
inversion of the civil engineer’s conical
sandpile. Consider 4 horizontal board
with just one hole. Away from the hole,
cement rises in every direction ar the
critical angle, creating a conical depres-
ston whose tip points downward and
rests at the center of the hole [see jllus-
tration on page 1 00]. These inverted
cones are the craters that form Callan’s
striking landscapes.

But what of the geometry when there
are several holes? The key point now is
that any cascading cement powder that
trickles through the board will fall our
through the hole that is nearest to its
mitial point of impact. It is therefore
possible to predict where the boundaries
between the conical craters will occur,
Divide the board into regions surround-
ing the holes, in such a manner that each
region consists of those points that are
closer to the chosen hole than they are
to any other hole. The region is the hole’s
“sphere of influence,” so to speak, ex-
cept that it is not o sphere but a poly-
gon. Provided the board s horizontal,
the boundaries between these regions
are directly underneath the common
boundaries of adjacent craters.

A way to sketch one of these regions
is to choose any hole and draw lines
from its center to the centers of all the
other holes [see illustration above]. Cut
each line in half and from that point
draw another line ar right angles to it
(that is, draw the perpendicular bisec-
tor). The result will be 4 crisscrossing
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Why the difference between the ideal shape
and the photograph? in fact, the shape of a
bubble that forms between two parallel rings
depends on how far apart the rings are, com-
pared with their diameters, If the separation in-
creases beyond a critical value—as happened
apparently in the photograph—the bubble
elongates and then collapses, forming two dis-
connected disks, each Spanning onering. —/s,

network of bisectors. Find the smallest
convex region that is bounded by seg-
ments of this network and contains the
chosen hole. This region is known as 4
Voronoi cell. Each hole is surrounded by
a unique Voronoi cell, and 4] the cells
together tile the plane. Georgii F. Voro-
noi (1 868-1908) was a Russian mathe-
matician who worked on number theo-
ry and multidimensiona] tilings. Voro-
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noi cells go by a few other names—Dj
richlet domains and Wigner-Seitz cells,g
for example—because they have been
rediscovered in many contexts. ;
Callan’s craters, then, rise in inverted
cones at the same critical angle and megt
above the edges of the Voronoi cells de-
fined by his system of holes. One com-
fortable consequence of this geometry
is that when two slopes meet, they do
s0 at the same height above the board—
there is no sharp discontinuity. Another
feature, less obvious, can also be de-
duced: the shape of the ridge where one
crater merges into its neighbor., In the
abstract, what we have are two invert-
ed cones rising at identical angles. They
meet above the perpendicular bisector
of the line that joins their vertices—
above the Voronoi boundary. Conse-;
quently, their intersection lie in the ver-
tical plane through that boundary lie,
What curve do you get if you cut a cone
with a vertical plane? The ancient]
Greeks knew the answer: g hyperbola. |
This fact helps to explain the rather jag-|
ged nature of Callan’s landscapes. '
What of the connection with astron- |
omy? Instead of holes in g plane, imag-
ine points in three-dimensional space. |
In the plane, the perpendicular bisector :
of a pair of points is a line, but in space
itis a plane. Draw these bisecting planes
for the lines between 4 given point and |
all the other points. [ et the Voronoi cell .
of the given point be the smallest con- |

vex region that surrounds and s |

bounded by parts of these planes. Now |
the Voronoi cell is polyhedron. Astrop- |
omers have recently discovered that the ‘
large-scale distribution of matter in the |
universe resembles a network of such
polyhedra. Most galactic clusters seem

to be located on the boundaries of ;

neighboring Voronoi cells, This pattern |
has been called the Voronoi foam mod- !

el of the universe because it looks some-
what like a giant bubble bath.

There is an analogy—imperfect, but
still illuminating—with the distribution
of cement powder in Callan’s landscapes.

!

In his sculptures, the cement piles up
highest along the Voronoi boundaries,

The analogous property in three-dimen-

sional space would be that as the uni-
verse expands, matter concentrates along |

the same boundaries, So this one simple
idea encapsulates some arresting art,
elegant mathematics and deep physics
about the structure of the universe, [+
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