Prediction, Parsimony and Noise

A model can be more accurate than the data used to build it
because it amplifies hidden patterns and discards unwanted noise

Hugh G. Gauch, Jr.

Amajor purpose of scientific investi-
gations is to describe reality through
models. A model’s worth depends in
large part on its accuracy. An equivalent
gain in accuracy can be achieved by in-
creasing the size of a data set or by ap-
plying more sophisticated modeling to
existing data. Collecting more data is
usually costly in dollars. Modeling is
costly as well, but the cost of arithmetic
operations has shrunk dramatically. Sev-
eral decades ago, the cost of performing
a billion arithmetic steps would have
been outrageous, but a present-day mi-
crocomputer can achieve billions of cal-
culations with little cost in time or mon-
ey. Computing power can be combined
with advanced statistical procedures, an
opportunity that often makes modeling
more attractive than collecting addition-
al data to improve accuracy. Data are
costly; today, calculations are cheap.

Investigators commonly believe that
a model can be no more accurate than
the data it uses. But is this s0? The an-
swer depends on three matters: the pre-
cise question being asked of the model,
the design of the experiment and the
quantity and accuracy of the available
data. For many scientific questions, nu-
merous experimental designs and a va-
riety of data sets, a model can be more
accurate than its data.
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For a well-known example, consider
the work of Gregor Mendel, an Augus-
tinian monk. In 1856 Mendel began ex-
perimenting with heredity in garden
peas. In one set of experiments, he
crossed a pure-breeding tall pea plant—
a plant with two genes for tall—with a
pure-breeding short pea plant—a plant
with two genes for short. The hybrid

“offspring had one gene for tall and one

for short. This made the offspring tall
because the gene for tall is dominant
over the gene for short. When these hy-
brid plants were self-fertilized, they pro-
duced 787 tall pea plants and 277 short
pea plants—a ratio of 2.84:1. Mendel
completed six related experiments on
other dominant-recessive combinations.
When he combined his data from all
seven experiments, he found a ratio of
2.98:1 for the dominant and recessive
traits. He modeled this as a 3:1 ratio,
which also explained and predicted oth-
er experimental results. If Mendel had
generated an infinite number of pea
plants in the second generation of tall-
short crosses, he would have obtained
one-quarter with two tall genes, one-
half with one tall and one short gene
and one-quarter with two short genes.
This would have produced a ratio of
three tall plants to every short plant, so
the 3:1 model duplicates the underlying
principles of genetics more accurately
than Mendel’s data. Likewise, the 3:1
model is a better predictor for the out-
come of future experiments than is the
empirical 2.84:1 result.

Increased accuracy through model-
ing now extends far beyond Mendel’s
experiments with peas. He averaged
seven numbers, whereas sophisticated
models now require billions of calcula-
tions. I shall describe examples in math-
ematics, chemistry and agriculture in
which models surpass their data’s accu-

racy. In so doing, I hope to show that
the underlying statistical principles are
entirely general, so that the opportunity
to gain accuracy through modeling per-
vades science. Aggressive statistical
modeling can help scientists make bet-
ter use of the data already at hand, de-
sign more cost-effective experimental
programs and increase the returns from
research investments. L
Statistical Steps

Most experiments include a treatment
design and an experimental design. The O'
treatment design specifies the controlled
variables included in an experiment.
For example, a treatment design might
involve the yields from four varieties of
a plant. On the other hand, the experi-
mental design specifies the allocation of
experimental units to the treatments,
usually through randomization and of-
ten including replication. The experi-
mental units could be the yield plots in
which the varieties are tested.

An experiment samples from an en-
tire population, and the data are used
to make inferences about this popula-
tion. For instance, an epidemiologist
might collect data on the incidence of
cancer in a thousand representative
people in order to draw inferences
about the world population of people
who have cancer. A variety of con-
straints, such as cost, force investigators
to use a limited sample. The distinction
between a sample and a population
leads to the difference between postdic-
tion and prediction.

In literal terms, postdiction describes
the past, whereas prediction forecasts
the future. More specifically, postdic@ﬁ
tion says what happened within the
confines of a single data set, or a sam-
ple of an entire population. A model
never beats its data for postdiction, be-
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Figure 2. Variance is the spread of data around
its mean, This graph reveals the frequency dis-
tribution for a hypothetical yield trial on three
varieties of a plant; each curve shows the results
for one variety. The variance can be divided
into two categories: variance between groups
and variance within groups. The variance
between groups is a measure of the spread
between the varieties. The variance within
groups measures the spread of individual,
replicated results within a variety. For instance,
the variety on the right (yellow) and the variety
on the left (red) have the same within-group
variance, and both have more within-group
variance than the variety in the middle (blue).

cause the data are the actual measures
of what did happen. Prediction, on the
other hand, describes what is likely to
happen in instances beyond the data at
hand—in an entire population. Scien-
tific applications are designed more of-
ten for prediction than for postdiction.
A predictively accurate model can be
closer to the true treatment effects than
are its data.

environment

A powerful model enhances predic-
tion by amplifying the pattern in a data
set and removing a large fraction of the
noise. Noise arises from a host of mea-
surement and sampling problems.
Replication produces the most direct
demonstration of noise. For example, a
plant breeder may have four ostensibly
identical replicates of a yield trial. But
instead of getting four identical results,
the yields might be 3,178, 2,754, 2,902
and 3,486 kilograms of crop per hectare.
So, even without knowing exactly the
true population mean, it is clear that the
data are noisy.

The Concept of Variance

Statistical procedures are best explained
through examples. Consider a hypo-
thetical yield trial with five varieties of a
crop tested in four environments, which
gives the treatment design 20 treat-
ments. The experimental design has
three replications in a randomized com-
plete-block design, which generates 60
observations. -

Ronald A. Fisher, a British mathemati-
cal biologist, developed a statistical
method called the analysis of variance.
It is applicable to data from an experi-
ment that has a treatment design and an
experimental design. The total variation
in the data is divided, or partitioned, into
various sources. The first, most funda-
mental partition reveals two sources of
variability: variance between treatments
and variance within treatments. Variance
between treatments arises from the treat-
ment design; variance within treatments

variety

Figure 3. Two-way factorial design generates a matrix of data. In this hypothetical yield trial,
five varieties of a plant (a, b, ¢, d and ) were grown in four environments (1, 2, 3 and 4), and the
experiment was replicated three times. The two factors, variety and environment, generate a
data matrix with 20 cells—one for each variety-environment combination. Each cell holds the
yields from the three replicates. Analysis of variance can be used to determine the sources of
variability in the data set. (Adapted from Gauch 1992, p. 55.)
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arises from the experimental design.
Subsequent partitions reflect the organi-
zation of a given experiment. Analysis of
variance determines whether the vari-
ability from a given source is large
enough to be statistically significant, or
else small enough to make chance the
more probable explanation.

The total variation is expressed as the
sum of squares of each datum minus
the grand mean (the sum of all observa-
tions divided by the total number of ob-
servations), which is 167,438 in the pre-
sent example. The total degrees of
freedom is the number of categories mi-
nus 1, or 60 — 1 = 59 for this experiment.
The total mean square is the grand
mean divided by the degrees of free-
dom, or 167,438/59 = 2,837.93.

The first partition separates the treat-
ment design from the experimental de-
sign. The 20 treatments have 19 degrees
of freedom and a sum of squares of
147,438. The remaining degrees of free-
dom (59 — 19 = 40) are assigned to error,
or effects of the experimental design,
which has a sum of squares of 20,000.
The sources of variation are indented in
a table to show that the various subto-
tals add up to the totals. For instance,

treatments and error add up to the total €@

degrees of freedom (19 + 40 = 59) and
the total sums of squares (147,438 +
20,000 = 167,438). The analysis of vari-
ance then continues by partitioning the
treatments into a model and a residual,
which will be explained below. Like-
wise, the error is partitioned into blocks
and pure error. A complete block con-
tains one replicate for all the genotypes
in the experiment, and there are as
many blocks as there are replications.
The blocks are smaller than the entire
experimental plot, and this tends to
generate less variability in uncontrolled
factors, such as soil, within a given
block. When the block-to-block varia-
tion is large, partitioning this source
from the error leaves a smaller pure er-
ror, which is the remaining variability
within the blocks. Using this smaller er-
ror increases the significance of sources
in F-tests.

The statistical significance of a source
is judged by its F-ratio, named after
Fisher. An F-ratio is calculated as the
mean square of the source divided by
the mean square for the appropriate er;@
ror term. Then a table or a computer is:
used to derive the probability, or p, val-
ue. Roughly speaking, the p value is the
probability that the observed result hap-
pened merely by chance; the comple-




mentary value (1 - p) is the probability
that the source caused a real effect.

' f ' (James Berger and Donald Berry pro-
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vide a more accurate description of the
p value.) In most cases, investigators
hope that the imposed treatments (dif-
ferent medicines, fertilizers or whatev-
er) have a real effect. So a small p value
is desired. The 0.05 and 0.01 (or 5 per-
cent and 1 percent) significance levels
are often used. In the hypothetical yield
trial, the blocks have a mean square of
740 and their appropriate error term is
pure error, which has a mean square of
487.37. This gives the blocks an F-ratio
of 1.52, which yields a p value of
0.23206. This is not significant at even
the 0.05 level, meaning that the blocks
are not statistically significant in this ex-
periment. The treatments, on the other
hand, have a mean square of 7,759.89
and an F-ratio of 15.92. This gives a 4
value that is less than 0.00001, which is
highly significant.

The amount of noise in a data set is
quantified conveniently by the signal-
to-noise ratio, or the signal variance di-
vided by the noise variance. An impor-
tant statistical goal is to minimize the
deleterious impact of noise upon results
and models. Most investigators parti-
tion the variance from the experimental
design into blocks and error to increase
significance levels and, in some cases,
to increase the accuracy of treatment es-
timates. Nevertheless, investigators
rarely partition the treatment variance
to increase accuracy. This is unfortunate
because experience shows that parti-
tioning the treatment variance into a
signal-rich model and a discarded,
noise-rich residual is often several times
as effective as analysis of the experi-
mental design. Both strategies can be
employed for optimal results. I consider
“aggressive” statistical analysis to in-
clude partitioning of the variance in
both the experimental and treatment
designs. Although statistical modeling
can be applied to both designs, here the
term “modeling” is used primarily for
analyzing the treatment design because
the treatments (rather than the replica-
tions) are the entities of focal scientific
interest, and their analysis generally of-
fers greater gains in accuracy.

‘ ‘ﬁmgmprehending Interactions
;‘ e hypothetical yield trial has a two-

e
-

way factorial design with five geno-
types and four environments. As men-
tioned above, the total degrees of
freedom is 19. The simplest analysis of

 genotypes

_environments

Figure 4. Analysis-of-variance table partitions the hypothetical yield trial (Figure 3) into dif-
ferent sources of variability and judges their statistical significance. Source names are
indented to highlight successive partitions. The first partition divides the variability that
comes from the treatment design and the experimental design. The treatment design’s
degrees of freedom and sum of squares are then partitioned into an Additive Main effects
and Multiplicative Interactions (AMMI) model and its residual. The model is further parti-
tioned into a genotype effect, an environment effect and the first interaction-principal-com-
ponent axis (Figure 5). Likewise, the error from the experimental design is partitioned into

blocks and pure error.

variance partitions the treatment varia-
tion into three sources: genotypes with
four degrees of freedom, environments
with three degrees of freedom and the
genotype-environment interaction with
12 degrees of freedom.

The interaction is the non-additive
variation that is left after removing the
additive effects. For this example, the
grand mean is 200, the deviation for the
first genotype is 20 and the deviation
for the first environment is 51. The aver-
age yield from the three replicates for
the first genotype in the first environ-
ment is 327. The estimate from the addi-
tive model is 200 + 20 + 51 = 271. The in-
teraction for this entry is 327 - 271 = 56,
Note that the sum of the grand mean
and the effects of the genotype, environ-
ment and genotype-environment inter-
action equal the experimental average.
Analysis of variance finds the sums of
squares for these effects to be 13,800,
107,310 and 26,328. The environmental
effect is the largest, but all three are
highly significant.

The additive effects involve one
number for each genotype and environ-

ment, which makes them easy to under-
stand. By sharp contrast, the interaction
involves a matrix of numbers. One
problem with the interaction is that
most of the noise in the treatments goes
into the interaction, decreasing its accu-
racy. Another problem is complexity.
Given a real data set with 100 varieties
and 30 locations, the interaction matrix
has 3,000 entries. Such a matrix is not
comprehended easily. It might contain
complicated patterns of great impor-
tance that investigators cannot grasp by
superficial examination. That challenge
has generated a need for simplification.
Statistical procedures for deriving parsi-
monious models from complex matri-
ces can be given both geometric and al-
gebraic explanations. I shall begin with
a geometric explanation because it of-
fers more intuitive appeal.

Around 1900, Karl Pearson of Uni-
versity College in London developed
principal-components analysis. He vi-
sualized a matrix with 7 rows and ¢
columns as r points in ¢-dimensional
space (or the reverse). The goal of prin-
cipal-components analysis is to projecta

1993 September-October 471




y axis

X axis

y axis

X axis

Figure 5. Principal-components analysis reduces the dimensionality of a data set. Its goal is
enhanced simplicity, or parsimony, with a minimum distortion of the data. A data matrix
with r rows and ¢ columns can be conceived as r points in c-dimensional space. As a simpli-
fied example, a cloud of numerous points could occupy a three-dimensional shape similar to
a football (left). Principal-components analysis finds a sequence of new coordinate axes that
pass through the points in the directions of greatest variation (right). The first axis (blue)
accounts for the most variation, and the second axis (green) accounts for the most remaining
variation. In this way, principal-components analysis can reduce the original three-dimen-
sional football to a two-dimensional ellipsoidal disk. Principal-components analysis can
clarify patterns in a data set and improve the accuracy of a model.

cloud of points in high-dimensional
space into relatively low-dimensional
space, but maintaining the original con-
figuration of points as faithfully as pos-
sible. More specifically, the first princi-
pal-components axis is the least-squares
best-fitting line through the points. The
first and second axes define the best
plane through the points.

The first axis is most important. Axes
can be added until their number equals
the number of dimensions in the data
set; the resulting full model fits the data
exactly. The main goal, however, is di-
mensionality reduction—accepting a lit-
tle inaccuracy for the sake of great gains
in simplicity. In many cases, most of the
variation in a large matrix, having even
hundreds of dimensions, can be cap-
tured satisfactorily in just a few princi-
pal-components axes. The original high-
dimensional data set may be nearly
incomprehensible to investigators, but a
principal-components graph, with only
two or three dimensions, may reveal im-
portant patterns quite clearly. As a sim-
plified example of dimensionality reduc-
tion, a three-dimensional cloud of points
shaped like a football can be reduced to a
two-dimensional elliptical disk.

Principal-components analysis can
also be given an algebraic interpreta-
tion. Each row and column is given a
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score. A model’s estimate for a given
row-and-column combination is the
product of their scores. This process is
repeated for each axis in a model, and
the results are summed. The additive
model discussed earlier gives genotypes
and environments deviations that are
summed; the multiplicative principal-
components model provides scores that
are multiplied.

The Additive Main Effects and Multi-
plicative Interactions (AMMI) model
combines analysis of variance and prin-
cipal-components analysis. First, analy-
sis of variance determines the additive,
or main, effects of the factors, such as
variety and environment. Then princi-
pal-components analysis is applied to
the interaction (rather than to the origi-
nal data). Accordingly, AMMI analysis
produces some parameters that are
added and others that are multiplied.

In the hypothetical yield trial, the addi-
tive effects have been given above. Recall
that the grand mean is 200, the deviation
for the first genotype is 20 and the devia-
tion for the first environment is 51. The
principal-components analysis of the in-
teraction matrix gives the first genotype a
score of 8 and the first environment a
score of 7. Therefore, the AMMI model
with one interaction-principal-compo-
nents axis estimates the yield of the first

genotype in the first environment as ¢
200 + 20 + 51 + (8 x 7) = 327. This value :
happens to equal the actual yield. In w . I
general, the model is close but not C
equal to the data, thereby leaving some

residual variance. From the sum of

squares of 26,328 in the interaction, the

first axis captures 24,300, leaving a

residual of 2,028.

If a data set has r rows and ¢ columns,
the minimum number of axes is 0 and
the maximum number is the smaller of
two numbers: ( — 1) and (¢ — 1). The
model with no interaction-principal-
components axis is labeled AMMIO,
that with one axis is AMMI1, and so on.
The model that retains all axes is the full
model (AMMIF). For example, if a data
set has six rows and seven columns, the
total number of axes is 5 ([r ~ 1]), and
the AMMI family includes six members
from AMMIO to AMMIS.

The additive part of AMMI was in-
vented by Fisher in 1918. Pearson in-_
vented the multiplicative part in 1901.
In 1923 Fisher and Winifred Macken-
zie of the Rothamsted Experimental g
Station, England, made separate appli-
cations of analysis of variance and
principal-components analysis to data g
from a potato trial. They discovered €
that the multiplicative principal-com-
ponents-analysis model fit the data
better than the more popular additive
model. Nevertheless, principal-compo-
nents analysis was not accepted wide-
ly, largely because it requires as much
as 100 times more calculations than
analysis of variance. In 1952 analysis of
variance and principal-components
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analysis were combined as AMMI by le
two groups, Evan Williams of the ca
Commonwealth Scientific and Indus- ch
trial Research Organization in Aus-

tralia, and Eugene Pike and Thomas gir
Silverberg of Raytheon Manufacturing un
Company. Another decade passed be- ba
fore computers made AMMI analysis de

feasible on large data sets. tio

The original motivation behind an
AMMI'’s development was to produce int
parsimonious summaries of large data To

matrices. AMMI provides a graph that dat
shows the additive effects on one axis dor
and the first interaction-principal-com- anc
ponents scores on the other axis, using bic
one type of point for genotypes and an- sig;
other for environments. This so-calledgiy T
biplot graph is remarkably informative, G% \ le
showing both additive and interaction vari
effects for both genotypes and environ- dat:
ments. These parameters of an AMMI cal g
model often capture more than 90 per- of y
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cent of the entire treatment variation,
giving an accurate and parsimonious
presentation of data. For the hypotheti-
cal yield trial, an AMMI model captures
98.6 percent of the treatment variation.

Given a choice among the members
of an AMMI family, or among some
other group of competing models, in-
vestigators need to quantify a model’s
power. One useful measure is statistical
efficiency—the number of replicates of
actual data divided by the number of
replicates needed for a model to pro-
duce equal accuracy. This value also
equals the variance of the actual data
divided by the variance of the model’s
estimates. For example, Richard Zobel
of the USDA Agricultural Research
Service and Cornell University, and I
found in a soybean-yield trial that
AMMI modeling based on two repli-
cates is as accurate as the results from
five replicates without modeling,
which gives a statistical efficiency of
2.5. This shows that modeling offers a
tremendously cost-effective means for
gaining accuracy.

Choosing a Curve
To apply the concepts behind statistical
modeling, I shall develop three exam-
ples: one from mathematics, one from
chemistry and one from agriculture.
The mathematical example models a
particular cubic equation, which pro-
vides an exact basis for evaluating and
comparing various models because the
underlying truth is known precisely.
Day-to-day research presents investiga-
tors with more difficult modeling prob-
lems, but progressively more-compli-
cated issues will be addressed in the
chemical and agricultural examples.

Scientific investigations usually be-
gin by gathering data to search for an
underlying relationship. Here I work
backward: beginning with a precise un-
derlying relationship, the cubic equa-
tion (y = 12.00 - 3.50x + 1.17x2 - 0.07x3),
and then creating experimental data for
integer values of x from one to seven.
To mimic the collection of experimental
data in the presence of noise, I add ran-
dom Gaussian deviations with a vari-
ance of 0.2 times the variance of the cu-
bic equation’s data, which gives a
signal-to-noise ratio of five.

The primary objective in this exam-

le is to compare the performance of

various polynomials in fitting the noisy
data. Such fitting involves three statisti-
cal goals. Estimation is finding the value
of y at a level of x included in the ex-

periment, here the integers from one to
seven. Interpolation is finding the value
of y at values of x between the experi-
mental values, such as 1.5 or 6.8. Ex-
trapolation is finding the value of y for a
value of x outside the experimental
range, such as 0.5 or 10. I shall empha-
size estimation.

An infinite number of different high-
degree polynomials can go through all
the data points exactly. These various
polynomials, however, give divergent
and wild extrapolations and interpola-
tions of y for new values of x. Although
the higher-order polynomials always
win the postdictive task of fitting the
noisy experimental data, experience
shows that parsimonious, lower-order
polynomials win the predictive task of
fitting new data. A parsimonious model
is reduced to the simplest state that still
reflects reality. Fisher recognized as ear-
ly as 1921 that a parsimonious polyno-
mial regression discards some of the
noise in a data set.

As a first effort, I modeled the noisy
data with a least-squares quadratic fit,
which produced the equation y = 7.95
+1.13x + 0.06x2 Note that the quadrat-
ic curve is closer to the true cubic curve
than are the data for six of the seven x

20
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Figure 6. Cubic equation (red) is modeled with
a quadratic equation (blue). Noise is added to
the cubic equation at x integers from one to
seven to simulate data points (green). Then the
data points are fitted with a quadratic equation.
At every x integer except six, the quadratic line
is closer to the line from the cubic equation
than the data points are. In other words, the
quadratic model is a more accurate representa-
tion of the cubic equation than the data are.

integers. The variance of the noisy data
around the values of the cubic equa-
tion is 3.524; the variance of the qua-
dratic equation is only 1.678. This im-
plies a statistical efficiency of 2.1
(3.524/1.678). So the model is more ac-
curate than its data.
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Figure 7. Noise affects a model’s fit with data. The cubic equation (Figure 6) is degraded with
noise. The noise is quantified with the signal-to-noise ratio—the ratio of signal variance to
noise variance. Statistical efficiency is the number of real replications divided by the number
of replications required for a model to produce the same accuracy. The noisy data are fit with
polynomial equations of the first order (red), second order (purple), third order (blue), fourth
order (green), fifth order (yellow) and sixth order (orange). With high noise (left), a first-order
polynomial provides the highest statistical efficiency. A second-order polynomial gives the
highest efficiency for data of intermediate noise (middle). A third-order polynomial gives the
best efficiency for data with little noise (right). The higher-order models never give the best

statistical efficiency.
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Figure 8. Electrolytic conductance can be measured by driving an alternating voltage through
an ionic solution and measuring the current. Here the solution contains hydrochloric acid. The
alternating voltage first makes the left-hand electrode positive (left), driving the chloride ions
(ved) to the left and the hydrogen ions (green) to the right. When the voltage reverses (right), the
chloride ions move to the right and the hydrogen ions move to the left. The ionic movement

carries a current.
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Figure 9. Electrolytic conductance was mea-
sured for hydrochloric acid of 19 concentra-
tions at 13 temperatures. The data were
degraded—made to appear more noisy—by
rounding the data to less-accurate levels. The
Additive Main Effects and Multiplicative
Interactions (AMMI) method—a combina-
tion of analysis of variance and principal-
components analysis—was used to model the
data. The AMMI method produced the high-
est statistical efficiency for the noisiest data,
those to the left side of the graph. Cleaner
data (right) produced lower efficiencies.
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The above example considers a single
noisy data set. What is the average mod-
eling performance over a variety of data
sets? To answer that question, thousands
of “experimental” data sets for the cubic
equation were generated by using dif-
ferent random Gaussian deviates each
time and averaging the results. The sig-
nal-to-noise ratios were varied from 1 to
100, and the model family included
polynomials from the first order to the
sixth order (with this last full model
equivalent to the experimental data).
The results show that the performance
of the first-order and second-order poly-
nomials varies with the signal-to-noise
ratio, producing the highest statistical ef-
ficiency for noisier data. The higher-or-
der polynomials provide the same sta-
tistical efficiency over all signal-to-noise
ratios. Data sets with a signal-to-noise
ratio below two are best fit with a first-
order polynomial. A second-order poly-
nomial best fits data sets with a signal-
to-noise ratio between two and 16.6.
Cleaner data, those with a signal-to-
noise ratio above 16.6, are best fit with a
third-order polynomial. No signal-to-
noise ratio makes the fourth-, fifth- or

sixth-order polynomial the best choice.
In other words, lower-order models pro-
vide better predictive accuracy for noisy
data sets, whereas cleaner data can sup-
port more parameters up to the true or-
der of the cubic equation.

An Electrolytic Example

In the mathematical example, the true
model was known by construction, but
investigators are not afforded that luxu-
ry. Now I consider a more difficult case,
the electrolytic conductance of hy-
drochloric acid. An electrolyte’s con-
ductance is measured by placing two
electrodes in an ionic solution, connect-
ing the electrodes to a rapidly alternat-
ing voltage and then measuring the cur-
rent through the electrolyte. The
conductance can be calculated from
Ohm'’s law—voltage equals current di-
vided by conductance. The units for
equivalent conductance are centimeters
squared divided by the ohm equivalent
{(where equivalent represents a volume
of solution that contains one mole of
negatively charged ions and one mole
of positively charged ions).

The experiment being considered in-
volved a two-way factorial design. One«
factor was temperature, which was var-¥
ied from 0 to 55 degrees Celsius in incre-
ments of 5 degrees and included a final
value of 65 degrees Celsius, for a total of
13 temperatures. The other factor was
the concentration of hydrochloric acid,
which was varied from 0.5 to 9.5 moles
per liter in increments of 0.5 for a total of
19 concentrations. This data set includes
247 treatments, and the conductance
ranged from 52.3 to 552.3 centime-
ters?/ohm equivalent. (The raw data are
available in Lide [1991, p. 5-94].)

To mimic the effect of using less-ac-
curate measuring instruments, the data
were degraded to seven levels of sever-
ity by rounding them to the nearest 1, 3,
5, 10, 20, 30 and 50. This generated sig-
nal-to-noise ratios from 130,000 to 57,
with the data rounded to the nearest 1
having the highest signal-to-noise ratio
and the data rounded to the nearest 50
having the lowest signal-to-noise ratio.

Then I fitted the seven noisy data sets
with AMMI models. The AMMI4 model
best fit the cleanest data—those rounded
to the nearest 1; the AMMI2 model best
fit the data rounded to the nearest 3; andg
the AMMI1 model best fit the data sets®’
that were more severely degraded. No-
tice that the less accurate data support
simpler AMMI models, just as shown in
the mathematical example.




To determine the statistical efficien-
cies of the models, the variance of the
degraded data around the original
data was compared with the variance
of the results from the AMMI models.
For the noisiest data, those rounded to
the nearest 50, the AMMI1 model
achieved an impressive statistical effi-
ciency of 10.15. For the most accurate
data, those rounded to the nearest 1,
the AMMI4 model’s statistical efficien-
cy was only 1.42—still worthwhile but
not as impressive. So, it is possible to
gain accuracy even when the underly-
ing, true model is not known.

Soybean Yields
The final example involves a soybean
yield trial. The experiment employed four
replications of the yields of seven soybean
varieties in 10 environments. These data
are rather imprecise, carrying only about
one significant digit, which presents a dis-
tinctive challenge in modeling. Moreover,
the true means for the treatments in this
example are unknown, and they cannot
be used as a standard for comparing a
model’s accuracy.

Consequently, these data demand a
different approach for validating models.
The data can be divided, using part for

Figure 10. Soybean yield trial demands aggressive statistical analysis because the data are
rather imprecise. Soybean varieties differ in many traits. For example, faster-maturing varieties
turn yellow earlier in the fall. The most important trait is yield, and effective statistical analy-
ses are required to determine accurately the yields from different varieties. Greater accuracy
allows agricultural investigators to increase future yields more rapidly, even with less data.

(Photograph courtesy of the author.)

environment combinations—three repli-
cates are chosen at random to be used for
modeling, and the remaining replicate, a
total of 70 observations, is reserved for
validation. This entire process is repeated
many times with different randomiza-
tions, and the results averaged. Then the

data to compute the expected values for
each of the 70 treatments.

To generate a statistic for comparing
models, I calculated the root-mean-
square predictive difference. This value
is a measure of the difference between
the values predicted by a model and the

modeling and part for validation. For models AMMIO through AMMI6 (or  data values reserved for validation. It is
each of the 70 treatments—variety and ~ AMMIF) are each fitted to the modeling  calculated by taking the difference be-
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Figure 11. Less complex models better fit the soybean data. Effective
replications is the number of replications needed with mere averaging
to match the accuracy of a statistical model. Seven AMMI models,
including zero to six principal-components axes, are applied to the
yield data from the soybean trials. Three of the soybean replicates are
used to generate models, and the fourth replicate is used to validate
models. The AMMI model with zero axes produces less than one
effective replication, so it is worse than the data. The models with one
and two axes produce more than four effective replications, even
though they are generated from just three actual replications. The
more-complex models, with from three to six principal-components
axes, provide about three effective replications, making them about
equal to the data. The shape of this curve is called “Ockham’s hill”
after William of Ockham.

Figure 12. U.S. corn yields have increased with new technology.
Before 1930 (green), farmers relied on open pollination, selecting the
best ears for future crops, which produced about 27 bushels per
acre. Around 1930, investigators began using hybrids (yellow), and
the yields doubled. By the 1960s, better hybrids became available
(blue), raising the yields to about 120 bushels per acre. If the current
trend continues (blue dashes) yields will be about 170 bushels per
acre by the year 2020. But if investigators apply aggressive statistical
analysis to selecting varieties (red dashes), corn yields will likely
exceed 180 bushels per acre by 2020. If aggressive data analysis gen-
erated similar yield increases in all major crops—such as corn,
wheat, rice and soybeans—it would provide enough additional
food to feed hundreds of millions of people. (Data from A. F. Troyer,
Dekalb Plant Genetics.)
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Figure 13. Accuracy and parsimony in combination determine modeling’s benefits, Because
pattern (blue) is determined by a few main factors, even simple models recover much of it in a
data set. Because noise (purple) is idiosyncratic and complex, it is recovered more slowly as a
modetl increases in complexity. A model’s postdictive accuracy (red) develops from the sum of
pattern and noise recovery. It increases quickly even in simple models, and then it tapers to a
slower increase. By contrast, predictive accuracy (green) arises from pattern recovery minus
noise recovery. It also increases quickly in simple models, but it then peaks on “Ockham’s
hill,” and it later decreases in increasingly complex models. The goal of modeling is accuracy
and parsimony. So the better models are located in the upper-left area in this graph.

tween a model’s estimate and the vali-
dation observation for each treatment,
squaring the result, summing the results
across all treatments, dividing the sum
by the number of validation observa-
tions and finally taking that number’s
square root. A low root-mean-square
predictive difference is good, indicating
that the model’s expected values are
close to the validation data. In this yield
experiment, the AMMI2 model gener-
ated the most accurate results, with a
root-mean-square predictive difference
of 352.73 kilograms per hectare. The
AMMI1 model was a close second, with
a root-mean-square predictive differ-
ence of 353.69 kilograms per hectare.
Although the root-mean-square pre-
dictive difference offers the appeal of
coming from empirical data, it is not the
desired measure. Instead, a model
should be assessed by its variance
around the true means of the treat-
ments, and not be penalized for imper-
fections in the validation data. Fortu-
nately, this quantity can be estimated
from the variance rule. In this case, the
variance rule says: The variance of pre-
dictive differences equals the model’s
variance plus the variance of the vali-
dation data. The variance of the predic-
tive difference for AMMI2 is just the
square of the root-mean-square predic-
tive difference, or 352.73% = 124,421. The
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variance of the validation observations
can be calculated from the data, and it is
simply the error mean square, 101,161.
Finally, the variance of the AMMI2
model is 124,421 - 101,161 = 23,260. Tak-
ing the square root of this number re-
veals the root-mean-square noise, which
is 152.51 kilograms per hectare. This
noise is the difference between a mod-
el’s predicted value and the true mean
of the population. So the estimates from
the AMMI2 model are generally within
about 152.51 kilograms per hectare of
the true mean yields. These calculations
show how a model’s accuracy can be
determined from a large number of val-
idation observations.

These numbers can also be used to
calculate a model’s effective replica-
tions, which is the number of replica-
tions required when merely averaging
the replicates in order to achieve the
same accuracy that the model can with
a (usually) smaller number of actual
replications. This measure is calculated
by dividing the variance in the valida-
tion observations by the variance of the
model, or 101,161 /23,260 = 4.35. In oth-
er words, although the AMMI2 model
is based on only three actual replica-
tions, it is as predictively accurate as the
treatment means from 4.35 replications.
Again, this model is better than its data.
It provides 1.35 free replications, which

in this case is equivalent to 94 free ob-
servations (about $2,000 worth of data).

The effective replications from the
soybean-yield trial can be determined
for the entire AMMI model family. Do-
ing so shows that the AMMIO model
provides less than one effective replica-
tion, even though the data are based on
three replications. Here the model is
worse than the data because it under-
tits real patterns. The AMMI1 and
AMMI2 models both generate more
than four effective replications, and they
are better than the data. All the higher
models produce about three effective
replications, and they are about equal to
the data. Such a graph of effective repli-
cations versus increasingly complex
models reveals what David MacKay of
the Cavendish Laboratory, England,
called “Ockham’s hill,” after William of
Ockham, a 14th-century English philoso-
pher who said that entities should not be
multiplied without necessity. The model
that provides the maximum effective
replications, AMMI2 in this case, is at the
peak of the hill. To the left of the peak,
the curve falls sharply because the mod-
els underfit the pattern; to the right of the
peak, the curve declines slowly where
the models overfit the noise.

Economic Advantages

The increased accuracy from AMMI
analysis provides plant breeders with
two benefits: a more reliable determina-
tion of superior varieties and a quicker
increase in crop yields. If AMMI model-
ing is used in most of the plant-breed-
ing programs during the next several
years, I estimate conservatively that the
additional food production will be
enough to feed several hundred million
people. Moreover, the cost of the statis-
tical analysis is trivial in comparison
with the cost of collecting more data to
achieve the same gain in accuracy.

The financial benefits of modeling are
best presented through an example.
Imagine that a yield trial is completed
and that producing and collecting the
data cost $500. If an overfit model is ap-
plied, it captures all the pattern in the
data as well as all the noise, and it repre-
sents the average yields over the replica-
tions. Let us say that having the overfit
model—the raw data—is worth $2,000.

A good parsimonious model, with only.

a middling statistical efficiency of 2.5,
would be worth $5,000—the product of
$2,000 and 2.5. Underfit models would
be worth very little, say $300, because
they would capture little of the pattern.
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What is the total value of these mod-
els? The full, overfit model costs $500
for data collection and is worth $2,000,
so the experimental work returns $4 for
every dollar invested. The cost of calcu-
lating the best model would be about
$50, but it provides $3,000 worth of ad-
ditional value. In other words, the best
model returns $60 in value for every
dollar invested in modeling.
| This example reveals a typical rela-
5 tionship: Modeling provides an order of
r magnitude greater return on investment
r than does experimentation alone. The
> two phases of research, however, are
) not competitive because modeling re-
- quires data. Instead, experimentation

o

X and modeling are complementary.

f This example concentrates on mone-
§ tary advantages, but aggressive statisti-
f cal analysis offers far greater benefits.
- More accurate modeling also produces
e better medical treatments, improved
3| products, more food and a variety of
e other advances.

e

, |  TheMagnitude of Modeling

- Most modeling efforts follow a simple

‘ philosophy: Enhance prediction by am-
) plifying a pattern and by discarding
1 noise. The examples from mathematics,
chemistry and agriculture reveal specif-
ic applications of this approach, but the
AT philosophy can be applied broadly.

e
(e

th |  Throughout any scientific investigation,
a- |  thereis a subtle interplay between pre-
er | diction, parsimony and noise.
- This interplay appears if prediction,
d- postdiction, pattern and noise are plot-
ral ted together on a graph of model accu-
he racy versus model complexity. Most of
be the pattern in a data set is recovered
on quickly with even relatively simple
Hs- models. A pattern depends usually on
on | justa few main causal factors, and
to | thereby is relatively parsimonious and
| summarized readily. Noise, on the other
are hand, is recovered slowly as a model’s
le. complexity increases. Noise is idiosyn-
ted cratic, complex and not easily summa-
the rized. In a set of related data, models
ap- can combine information to discrimi-
the | natebetween pattern and noise.
ore- | The accuracy of both prediction and
ica- | postdiction rise quickly as parameters
erfit | are added in relatively simple models.
000. | Postdictive accuracy continues to in-
onl rease with a model’s complexity, but
2.5,¥ ""Wthe accuracy of prediction peaks rather
ct of early and then decreases with increas-
suld ingly complex models. Postdiction does
ause not distinguish pattern from noise, so
T, postdictive accuracy rises as the sum of

pattern and noise. In contrast, predic-
tion rewards the recovery of pattern but
penalizes the recovery of noise. This
causes predictive accuracy to increase
as a function of pattern recovery minus
noise recovery. Note that the distinction
between postdiction and prediction
generates two strikingly different views
on parsimony, with only the latter ex-
hibiting Ockham’s hill.

Another benefit of modeling arises
from the distinction between direct and
indirect information. For example, using
the least-squares quadratic fit to estimate
the cubic equation’s y value at x = 3 ex-
ploits the one experimental measure at
that x integer, the direct information, and
the six additional measures from other x
integers, the indirect information. Like-
wise, in Mendel's experiments, he devel-
oped a 3:1 ratio for the tall-short crosses
by combining the results from these
crosses (direct information) with the re-
sults from six related crosses (indirect in-
formation). An individual piece of indi-
rect information may not have much
value, but combining all the indirect in-
formation can enhance the pattern and
decrease the noise in a model.

Given this general picture of model-
ing, when does modeling offer the
largest benefits? The answer involves
three statistical considerations. First,
modeling offers larger benefits as noise
increases. Second, modeling accom-
plishes more for larger data sets. Third,
modeling excels when a parsimonious,
simple model captures most of the
data’s pattern. Two practical considera-
tions must also be mentioned. Model-
ing is more advantageous when data-
collection costs surpass the cost of
statistical analysis. And modeling is ex-
tremely useful when gains in accuracy
are urgent and the derived decisions are
of great importance, such as in the diag-
nosis of an illness.

The conclusions reached here extend
beyond the polynomial and the AMMI
models. The general story about predic-
tion, parsimony and noise applies to a
wide class of models: multiple regres-
sion, moving averages, time-series analy-
sis, factor analysis, canonical correlation
analysis and countless others. For exam-
ple, Gary Fick of Cornell and David On-
stad of the Illinois Natural History Sur-

- vey modeled an alfalfa yield trial with

Figure 14. Protein shape is modeled with a statistical interpretation of x-ray-diffraction data.
The shape of this inmunosuppressive drug, FK506 (yellow), bound to a protein, FKBP (blue),
in a T cell of the immune system was determined by using experimental x-ray-diffraction data,
which alone are too noisy to determine an accurate structure. The diffraction data are com-
bined with additional information on typical bond lengths and angles to determine the most-
accurate structure of the protein. Image courtesy of Gregory Van Duyne of Yale University and
Andrew Karplus and Jon Clardy of Cornell University.)
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multiple regression, and they found that
relatively parsimonious models were
more predictively accurate.

At present, there are few exceptions
to the generalization that investigators
ignore the opportunity to gain accuracy
through modeling. Nevertheless, prin-
cipal-components analysis and other
modeling systems have been used for
many years in signal, radar and image
processing to increase the signal-to-
noise ratio and thereby sharpen images.

More recently, Axel Briinger of Yale
University applied aggressive statistical

“modeling to the three-dimensional
shape of proteins. A family of models
was fitted to noisy x-ray diffraction
data, reserving part of the data for vali-
dation to identify the most predictively
accurate model. Choosing the model
that optimally fits the data—neither
overfitting nor underfitting it—allows a
description of the protein shape that
best reflects its true structure. Gregory
Van Duyne of Yale University, Andrew
Karplus and Jon Clardy of Cornell and
Robert Standaert and Stuart Schreiber
of Harvard University used Briinger’s
technique to describe the shape of a
complex formed by an immunosup-
pressive drug, FK506, and a protein,
FKBP, in T cells—the guardians in the
immune system that detect and destroy
foreign cells. This immunosuppressive
drug is being prescribed for transplant
patients to limit the chances of tissue re-
jection. Knowing the shape of the drug-
protein complex may lead to the devel-
opment of better immunosuppressants.

Scientific investigators have many
needs and opportunities for models that
are better than their data. Simplistic
analyses often glean only a fraction of
the information in a hard-won data set,
whereas modeling extracts even the
most subtle patterns. Failing to analyze
data effectively is like a leaving an or-
ange half-squeezed. As statisticians of-
ten say: Data worth collecting are also
worth analyzing.
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mentary value (1 - p) is the probability
that the source caused a real effect.
(James Berger and Donald Berry pro-
vide a mare accurate description of the
pvalue) In most cases, investigators
hope that the imposed treatments (dif-
ferent medicines, fertilizers or whatev-
er) have a real effect. So a small p value
is desired. The 0.05 and 0.01 (or 5 per-
cent and 1 percent) significance levels
are often used. In the hypothetical yield
trial, the blocks have a mean square of
740 and their appropriate error term is
pure ertor, which has a mean square of
487.37. This gives the blocks an F-ratio
of 1.52, which yields a p value of
0.23206. This is not significant at even
the 0.05 level, meaning that the blocks
are not statistically significant in this ex-
periment. The treatments, on the other
hand, have a mean square of 7,759.89
and an F-ratio of 15.92. This gives a p
value that is less than 0.00001, which is
highly significant.

The amount of noise in a data set is
quantified conveniently by the signal-
to-noise ratio, or the signal variance di-
vided by the noise variance. An impor-
tant statistical goal is to minimize the

. ‘: .deleten'ﬂus impact of noise upon results

o

and models. Most investigators parti-
tion the variance from the experimental
design into blocks and error to increase
significance levels and, in some cases,
to increase the accuracy of treatment es-
timates. Nevertheless, investigators
rarely partition the treatment variance
toincrease accuracy. This is unfortunate
because experience shows that parti-
tioning the treatment variance into a
signal-rich model and a discarded,
noise-rich residual is often several times
as effective as analysis of the experi-
mental design. Both strategies can be
employed for optimal results. I consider
“aggressive” statistical analysis to in-
clude partitioning of the variance in
both the experimental and treatment
designs. Although statistical modeling
can be applied to both designs, here the
term “modeling” is used primarily for
analyzing the treatment design because
the treatments (rather than the replica-
tions) are the entifies of focal scientific
interest, and their analysis generally of-
fers greater gains in accuracy.

“omprehending Interactions
he hypothetical yield trial has a two-

way factorial design with five geno-
types and four environments. As men-
tioned above, the total degrees of
freedom is 19. The simplest analysis of

sum of

maan

SN mﬂ 5quares squares F-ratio pialile
total ; 59 167,438 2,837.93
frealments 18 147,438 7,759.80 15.02 nnmou
madal 13 145410 11,185.38 22 95 0.00000
genolypes 4 13,800 3,450.00 r.08 0.00023
ermiranments 3 107,310 35,770.00 7330 0.00000
IPCA 1 & ! 24,300 4050.00 8.31 0.00001
residual 5] 2,028 338.00 0.69 0.65622
arror 40 20,000 500.00
blocks 2 1.480 740.00 1.62 0.23206
pure errar 38 18,520 487.37 J

Figure 4. Analysis-of-variance table partitions the hypothetical yield trial (Figure 3) into dif-
ferent sources of variability and judges their statistical significance. Source namés are
indented to highlight successive partitions. The first partition divides the variability that
comes from the treatment design and the experimental design. The treatment design’s
degrees of freedom and sum of squares are then partitioned into an Additive Main effects
and Multiplicative Interactions (AMMI) model and its residual. The model is further parti-
tioned into a genotype effect, an environment effact and the first interaction-principal-com-
ponent axis (Figere 5). Likewise, the error from the experimental design is partitioned inta

blocks and pure error.

variance partitions the treatment varia-
tion into three sources: genotypes with
four degrees of freedom, environments
with three degrees of freedom and the
genotype-environment interaction with
12 degrees of freedom.

The interaction is the non-additive
variation that is left after removing the
additive effects. For this example, the
grand mean is 200, the deviation for the
first genotype is 20 and the deviation
for the first environment is 51. The aver-
age yield from the three replicates for
the first genotype in the first environ-
menk is 327, The estimate from the addi-
tive model is 200 + 20 + 51 =271, The in-
teraction for this entry is 327 - 271 = 56.
Note that the sum of the grand mean
and the effects of the genotype, environ-
ment and genotype-environment inter-
action equal the experimental average,
Analysis of variance finds the sums of
squares for these effects to be 13,800,
107,310 and 26,328, The environmental
effect is the largest, but all three are
highly significant.

The additive effects involve one
number for each genotype and environ-

ment, which makes them easy to under-
stand. By sharp contrast, the interaction
involves a matrix of numbers. One
problem with the interaction is that
most of the noise in the treatments goes
into the interaction, decreasing its accu-
racy. Another problem is complexity.
Given a real data set with 100 varieties
and 30 locations, the interaction matrix
has 3,000 entries. Such a matrix is not
comprehended easily. It might contain
complicated patterns of great impor-
tance that investigators cannot grasp by
superficial examination. That challenge
has generated a need for simplification.
Statistical procedures for deriving parsi-
monious models from complex matri-
ces can be given both geometric and al-
gebraic explanations. T shall begin with
a geometric explanation because it of-
fers more intuitive appeal.

Around 1900, Karl Pearson of Uni-
versity College in London developed
principal-components analysis. He vi-
sualized a matrix with r rows and ¢
columns as r points in c-dimensional
space (or the reverse). The goal of prin-
cipal-components analysis is to project a
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