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provided by genome sequencing efforts,

: Introduction

‘E Since the classic works of Chou and Fasman [1] and Lim
f (2] were published more than two decades ago, the accu-
“ racy of protein sccondary structure prediction in three
tates (a-helix, B-strand, and coil) from sequence infor-
ation has been steadily increasing at an average rate of
liele less than 1% a year. Until recently, the major
psource of improvement in  prediction  from  single
'sequence information has been the application of more
phisticated recognition algorichms, such as neural net-
orks [3,4] and the ncarest neighbor approach [5.6].
ong with the growth of available protein tertiary struc-
gures used for training [7]. In recent vears, more remark-
ble improvement has been achieved by utilization of
ultiply aligned scquence homologs with the best
ported accuracies exceeding 70% [8=13]. It has been
monstrated that the additional information contained
a set of related primary structures yields an accuracy
in of 5-7% rclative to prediction from only a single
Bequence [14].

he achievable sccondary structure prediction accuracy
Bas been a major topic of discussion [15,16]. It has been
Brgued that furcher significant improvement in accuracy is
l likely. However, a theoretical study [17] has noted that
e information potential of current sequence/structure
tabases has not been exhausted and has suggested that
Rgnificantly higher prediction accuracies, up to 85%, arc
sible from consideration of higher order, racher than
purely local, information as well as from the extended
'wlcdgc of sequence homologs.

Background: The accuracy of secondary structure prediction for a protein from
knowledge of its sequence has been significantly improved by about 7% to the
: 70-75% range by inclusion of information residing in sequences similar to the
query sequence. The scientific literature has been inconsistent, if not negative,
regarding chances for further improvement from the vast knowledge to be

! Results: By applying a prediction technique that is particularly sensitive to added

1 w sequence information to a standard set of query sequences with related primary

] f f structures taken from chronologically successive releases of the SWISS-PROT
database it is shown that prediction accuracy can be expected to reach

' 80~85% with a large 10-fold increase in present sequence knowledge.

“Conclusions: Even with present prediction approaches, improvement in
- prediction accuracy can still be expected, albeit limited to no more than 10%.
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We have investigated the role of homologous sequence
information in sccondary structure prediction by conduct-
ing a large-scale computational experiment in which the
growth of the available sequence data was artificially sim-
ulated by considering chronologically successive, but
existing, releases of the SWISS-PROT database and, as
the asymptotical case, the TREMBL database created by
translating all coding frames in a very recent EMBL
nucleotide sequence database [18,19]. It is shown that the
amount and quality of sequence data available crucially
influence the prediction accuracy; however, the improve-
ment expected can be no more than 10% with present
approaches, and probably less.

Results and discussion

Prediction accuracy versus sequence database size

Figure Ta shows the dependence of the prediction accuracy
achieved by our sccondary structure prediction program
PREDATOR on the number of amino acid residues in a
given sequence database release. One immediate observa-
tion is that the availability of even a very small sequence
databasc (release 2 with 3939 amino acid sequences and
900163 residues) improved the prediction compared to
that from the single query sequence (an improvement from
68% to 69.2%). Further, the curve appears steep in the
region corresponding to the SWISS-PROT releases 2-16
(years 1986-1990; accuracy increase from 69.2% to 73%)
and then begins to flatten despite the explosive growth in
the number of available protein sequences. Although the
TREMBL database contains three times more sequence
data than the largest SWISS-PRO'I" release considered in
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Figure 1
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(a) Dependence of secondary structure
prediction accuracy on the size of the profy
sequence database used to extract ]
homologous information. The insert shows
logarithmic extrapolation of the data for a
fold increase in the sequence data availabl
(b) Dependence of the secondary structu
prediction accuracy on the average numbd
amino acid residues extracted from the
protein sequence database through datab
searches and alignments over each predid
residue in our sample of 125 protein chaing
(¢) Dependence of the average pairwise o
alignment information content, or :
pseudoinformation, per aligned residue on’
database size. 1
Each dot corresponds to one release of the
SWISS-PROT database; only even release

reduce computational requirements, Values}
for the single-sequence case (no homologg
information available) and for the TREMBL §
database simultaneous to release 32 of
SWISS-PROT (November 1995) are also !
shown. Logarithmic regression is shown as|
dashed line. ;




this work, the gain in accuracy achieved by its use was a
mere 0.9%. Logarithmic extrapolation of the available data
to the case of a 10-fold increase of the database size (corre-
sponding roughly to scquence knowledge in two human
genomes) shows that the potential for prediction improve-
| ment from multiple sequences is not exhausted and that
accuracy close to 80% is feasible (see insert, Fig. 1a).

Prediction accuracy versus protein family size
The quality of the prediction does not depend directly on
the total volume of the sequence database, but rather on
the number of sequences related to the query sequence.
Furthermore, only significant and nontrivial similaritics in
the range of 25-90% residue identity with the query
sequence contribute to the prediction. Figure 1b illus-
trates the dependence of the prediction accuracy on the
average number of individual database residues reliably
related to each of the residues in the query sequence
| through careful subsequence pairwise alignment. After
- the relatively steep growth corresponding to carly data-
base releases, the plot acquires a nearly linear character,
with approximately 0.5-1.0% accuracy improvement per
every additional five related residues. These relationships
suggest that the slowing growth in prediction accuracy is a
result of decreasing addition of new sequences related to
| ‘the particular set of 125 protein chains tested.

] & Prediction accuracy versus data quality
3 ’ Another crucial factor in prediction accuracy is the quality
' of the related scquence sets available for the prediction.
E Addition of subsequences trivially related to the query
b sequence with very high percent residue identity after
‘ alignment does not add substantially new information. On
: the other hand, using sequences questionably related to
: the query sequence (identity of 20-25%) is counterpro-
b ductive, as the relationship may not imply structural simi-
E larity. For both these extreme cases, the information
i content will be low (e.g. for 15% and 80% or Q";/’”= 0.15
 and 0.80, the pseudoinformation values will be l”;/”’= 0.28
 and 0.17, respectively; see Materials and methods) and the
 contribution of the corresponding pairwise alignments
b downweighted. Availability of sequences related to the
| query sequence in the range of 36% identity has the
\strongest influence on the prediction quality. As seen in

| Figure 1c, the average information content per each

Faligned residue used for prediction is steadily growing
t with each sequence database relcase, but is unlikely to

 reach its optimal value of 0.37.

!

| Pairwise versus multiple alignments

FReliance on rigorous pairwise alignment between the
tscquence to be predicted and other related sequences or
psequence fragments avoids many difficulties characteristic
bof hierarchical multiple and global sequence alignments,
fwhere unreliably related sequence regions are more likely
£120,21]. It must also be stressed that the predictions in this
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work are not consensus predictions for an entire protein
family and are made for one protein sequence considering
related subsequences through pairwise comparisons. This
process avoids the limitations imposed on the achievable
prediction accuracy by the variation of observed secondary
structures amongst different family members [22].

Conclusions

The limiting factor in secondary structure prediction accu-
racy from multiple and related sequences is not the princi-
pal inability of machine intelligence methods to make use
of additional information in ever larger sequence families,
but the natural limitations on the amount and diversity of
available sequence information resulting from sequencing
effores. With an increase in sequencing speed and target
species, the average achievable accuracy of prediction still
has a potential for improvement. Nevertheless, 80-85%
correctness would appear to be the upper limit without a
breakthrough in prediction approaches.

Materials and methods

Secondary structure prediction algorithm

Secondary structure predictions were effected with the program
PREDATOR [13,23]. The average prediction accuracy of the method is
68% from a single sequence and 75% from multiple sequence sets.
The two most novel features of the algorithm are utilization of sec-
ondary structure propensities based on both local and long-range
effects, and utilization of similar sequence information in the form of
carefully selected sequence fragments, taken from available databases
and significantly related to those of the query sequence through pair-
wise local alignment, rather than global multiple alignments of entire
sequences. The secondary structure propensities of the related subse-
quences (1 — m) are combined with (projected onto) those of the query
sequence O and weighted according to their information content / {or
pseudoinformation) taken from the corresponding pairwise alignments;
namely, %7 =-Q6™InQ%" where Q%m is the fraction of identical
residues in the local alignment g for sequence fragment m. % reaches
its maximum value (0.367) when Qoé'” =0.36 or 36%.

The source code, documentation and executables of our secondary
structure prediction program PREDATOR are freely available for acade-
mic users via anonymous ftp from ftp.ebi.ac.uk (directories /pub/soft-
ware/unix/predator and /pub/software/dos/predator). Protein sequences
can be submitted for secondary structure prediction either via the inter-
net to http://www.embl-heidelberg.de/predator/predator_info.ntml or
through electronic mail to predator@embl-heidelberg.de. A mail
message containing HELP in the first line will be appropriately answered.

Training and testing

Predictions were generated for a list of 125 nonhomologous proteins
that was published by Rost and Sander [9] and now constitutes a
comparative standard. Related sequences were extracted through
FASTA (version 2.0) database searches [24] using a uniform cutoff
threshold of 0.0001 for statistical significance of subsequence rela-
tionships. Each sequence set was made nonredundant such that no
two sequence members shared more than 95% identical residues
after alignment. A full jackknife procedure was performed to test
achievable accuracy by excluding one of the 125 protein structures
and the corresponding sequence set, deriving database statistics from
the remaining 124 structures and recognition parameters from the
remaining 124 sequence sets, and finally using this information to
predict secondary structure for the excluded protein. The final predic-
tion accuracy resulted from averaging over the 125 proteins, each
under jackknife conditions.
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