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Sequence Alignment Techniques and Their Uses 
 
 Since rapid sequencing technology and whole genomes sequencing, the amount of 
sequence information has grown exponentially.  With all of this data, it is possible to do 
comparisons where one can learn about the structure, function, and evolutionary 
relationships of different parts of organisms.  Sequence alignment techniques have been 
developed to do comparisons.  The goal of alignment is to obtain the optimal alignment 
of sequences.  Pairwise alignment techniques, where two sequences are studied at a time, 
were developed first with multiple alignment techniques, where many sequences are 
compared at once, coming later (Fig. 1).   
 Dot plots were developed by W.M. Fitch (1969) as a way to visualize similarities 
and differences between two sequences.  Regions of similarity appear as diagonal lines 
on the matrix.  The Needleman-Wunsch (1970) algorithm globally aligns two sequences, 
meaning the path starts at one edge and runs continuously to the other edge.  This method 
does not penalize the score of the alignment for the insertion of gaps into the sequence 
(Vingron, 2002).  The Smith-Waterman (1981) algorithm was developed to detect local 
alignments.  This method allows paths to begin and end inside the matrix (Schuler, 1998).  
In 1983, the concept of using “words” to look for local similarities was developed 
(Wilbur and Lipman, 1983).  Next, modifications to the Smith-Waterman algorithm to 
detect the best nonintersecting, suboptimal, local alignment were added (Altschul and 
Erickson, 1986; Waterman and Eggert 1987).  The first substitution matrix, PAM 
(Percent Accepted Mutation), was developed to measure evolutionary distances 
(Dayhoff, et al, 1978).  Another substitution matrix, BLOSUM, was developed that 
compared sequences based on their maximum level of identity (Henikoff and Henikoff, 
1992).  In the mid-1980s, techniques to search similarities within databases were created.  
The first was FASTA, which used substitution matrices to match words (Lipman and 
Pearson, 1985).  The next technique was BLAST (Basic Local Alignment Search Tool), 
which uses neighborhoods of words and Karlin-Altschul statistics, but does not allow 
gaps (Altschul, at al, 1990).  BLAST was modified to BLAST 2.0, which allowed gaps, 
and PSI-BLAST, which creates and iteratively refines profiles (Altschul, et al, 1997). 
 The first multiple alignment method was creating profiles, which iteratively 
applied pairwise alignments with a fixed alignment of a subgroup, thus allowing the 
determination of conserved patterns and creation of hierarchical trees (Gribskov, et al, 
1987).  The next method developed was CLUSTAL, which also uses profiles, and has 
been modified over time (Higgins, et al, 1992; Higgins et al, 1996: Higgins, et al, 1997).  
Two other variations of profiles are MultAlin by Corpet (1988) and generalized profiles 
by Bucher and Karplus (1996).  The Hidden Markov Model (HMM) is a powerful way to 
align and search sequences that “learns” the characteristic traits of the sequence sets 
(Krogh, et al, 1994). 
 PAM matrices can be used to determine whether an amino acid substitution would 
be favored or avoided over time (Vingron, 2002).  PAM matrices with lower numbers, 
e.g. PAM120, are closer in time than PAMs with higher numbers, and have a higher 
degree of similarity.  Evolutionarily related proteins have biased amino acid frequencies 
that represent changes that have been accepted over time (Shuler, 1998).   
 Functions of unknown proteins can be determined by doing BLAST searches.  
Sequences that align best are most likely to have similar functions.  If the function of the 
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best aligned protein is known, the function of the unknown protein can be inferred by 
“guilt by association”, i.e. if it looks like it, it probably acts like it.  Further biochemical 
experiments can then be performed to confirm the function.
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FIGURE 1.  Timeline of Sequence Alignment Techniques 
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Computational Functional Genomics Analyzes with a New Genome 
 
 First, I would perform various microarray experiments to obtain expression data 
that can later be combined with other data to predict protein function.  I would then 
translate the ORFs into the amino acid sequence.  Amino acid sequences are better for 
comparisons because are not as degenerate as the nucleotide sequence, and so would be 
more sensitive for doing alignments.  Because this is a microbe, I am assuming it would 
be a bacterium; therefore I would not need to worry about splicing out introns.   
 I would then query PROSITE with the protein sequences to see if my genome 
contains any known patterns, such as localization tags or transmembrane domains 
(Wishart, 2001).  The patterns could be combined with expression data and clustered to 
find any interactions among the proteins.  Proteins that interact most likely are involved 
in the same cellular processes and thus have similar functions.  A similar comparison 
could also be performed with expression data and proteins with localization tags.  
Specific genes have characteristic expression levels in different areas in the cell, such as 
in the cytoplasm, periplasm, or along the cell membrane.  When these expression levels 
are combined with localization tags, prediction of protein subcellular localization can be 
made.  If I know where something localizes, I can then make predictions about its 
function.  A protein’s function is often associated with where it is in the cell, for example, 
transmembrane domains in cell membranes will probably be associated with transport or 
motility.   
 I could also take the protein sequences and divide them into segments of less than 
300 amino acids, however making sure to keep motifs and patterns intact, and do a 
BLAST search.  The BLAST search would produce proteins of, hopefully, known 
functions that align well with the unknown proteins.  These proteins could be homologs 
to the unknown proteins, thus allowing me to infer the unknown proteins’ functions, 
because proteins with similar sequences often have similar functions.  I could do a PSI-
BLAST search to find any orthologs or paralogs to the unknown proteins, which would 
allow me to know more about functions the proteins and their evolutionary history 
(Dunbrack, Jr., 2002). 
 Interactions between proteins could also be determined by mapping the unknown 
proteins to a known protein interaction map, e.g. E. coli interaction map.  Pairwise 
comparisons with BLAST are first performed and then CLUSTAL would be used for 
multiple alignments (Schachter, 2002).  From this data, HMM profiles would be made 
and compared to look for values below a certain threshold, which would define homology 
between the unknown proteins and E. coli (Schachter, 2002).  Again homologies and 
similar interactions imply similar functions.   
 With all of the predictions for protein functions, the genome could be putatively 
annotated.  The annotation would be verified as biochemical experiments are performed 
to verify the protein function predictions.
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Figure 1. Outline of Plan 
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