
 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Computational approaches to the discovery of regulatory elements 

in noncoding DNA 
 

 

 

Michael Koldobskiy 

 
 
 
 

MB&B 452a 
December 13, 2002 

 



INTRODUCTION 

 Biological research in the post-genomic era has been charged with the formidable task of 

assigning cellular functions to thousands of gene products.  Large-scale gene deletion (1) and protein 

structure determination (2) efforts are underway, and creative methods for global characterization of 

protein activities, such as protein microarray technology (3), have been devised.  Thus, much 

progress is being made in annotating the protein-coding regions of genomes.  However, a more 

complete understanding of the genome also requires the annotation of noncoding DNA, and in 

particular the identification of regulatory elements responsible for transcriptional control of gene 

expression.  Noncoding regulatory elements serve as binding sites for specific transcription factors, 

and thus dictate which genes are expressed, at which times, and in which cells.  This mechanism is 

therefore responsible for cellular differentiation, function, and response to stimuli (4).  Discovery of 

regulatory motifs by traditional genetic and biochemical methods is quite laborious, requiring the 

construction of a series of deletions in the noncoding region upstream of a gene, and testing each one 

for effects on gene expression.  Fortunately, bioinformatic analysis can greatly simplify this process 

by predicting likely regulatory elements. 

 

STRATEGIES 

1. Using microarray-based expression profiles 

A.  Overview 

One strategy for identifying unknown regulatory elements in gene promoters benefits from 

microarray-based expression profiling (5, 6).  An expression profile is determined by quantifying 

relative levels of mRNA transcripts as time (or another experimental variable) changes (7-9).  Genes 

with similar expression profiles can then be clustered (10 and references therein).  Since mRNA 

quantitation directly reflects transcriptional activity, genes that are transcriptionally coregulated 

should cluster together.  Similarities in the upstream sequences of clustered genes can then be 

identified as potential transcription factor binding sites. 

Ohler and Niemann report that in practice identifying the conserved regulatory motif is not so 

simple: the motif is of unknown size, it might not be well conserved between the various promoters 

analyzed, the promoter sequence used for the analysis might not be complete, and the microarray 



clustering algorithm may produce results that are not representative of in vivo coregulation (11).  

Nevertheless, the approach has been successful in identifying yeast promoters (5).  In higher 

eukaryotes, the situation is more complicated since regulatory elements may be dispersed over very 

large distances, and identification of the transcription start site is itself a challenge (12). 

 

B.  Identification of conserved motifs 

 A local multiple alignment algorithm capable of detecting subtle similarities can be used to 

compare the promoters of putatively coregulated genes.  A highly effective approach is Gibbs 

sampling (13).  Briefly, given N sequences, it seeks to find a pattern of a given width W within each 

sequence.  One sequence, z, is chosen at random or in a specified order.  For a segment of width W 

starting at a random position in all sequences excluding z, the pattern description (probabilistic model 

of residue frequencies at each position in the selected segments) and background frequencies 

(probabilistic model of residue frequencies at positions not in the selected segments) are calculated.  

Every possible segment of width W in z is scored according to the ratio of the probability that it was 

generated by the current pattern probabilities over the probability that it was generated by the 

background probabilities.  The algorithm continues iteratively, such that once a correct segment is 

picked by chance in one sequence, the process will tend to recruit further correct segments.  Notably, 

the Gibbs sampling algorithm is able to find an optimized local alignment model for N sequences in 

N-linear time. 

 Another alignment approach based on a statistical algorithm is Multiple Expectation-

maximization for Motif Elicitation, or MEME (14, 15).  The expectation-maximization (EM) 

algorithm is used to fit a statistical model to each input sequence; for each motif, MEME maximizes 

a likelihood function that balances width of the motif, accuracy of the match, and the number of 

sequences in the data set that exhibit a match.  The algorithm determines the optimal width of the 

motif, whether the motif occurs in all sequences or a subset, and whether it occurs multiple times or 

once per sequence.  Having identified a motif, MEME can search for more motifs sequentially, 

excluding previously identified motifs from subsequent searches.  MEME is therefore capable of 

identifying a motif containing a gap, but would consider it to be two separate motifs identified in 

different runs of the algorithm. 



A modified Gibbs sampling algorithm is also able to determine the width of the motif, and 

the number of copies of a motif in a sequence (16).  Additionally, recent work has shown that 

representing the background residue frequency by a higher-order Markov process improves detection 

of regulatory elements by the Gibbs sampling approach.  The authors suggest using an independent 

data set of intergenic regions for each organism to establish a background model whose quality does 

not depend on the input sequences for a given analysis (16, 17). 

A different class of algorithms examines oligomers of a certain length and reports those that 

occur more often than the background promoter sequence composition (18, 19).  These methods 

yield a list of over-represented oligomers, rather than a weight matrix model of the motifs as do 

Gibbs sampling and MEME (11). 

  

2.  Using cross-species comparisons 

An alternative strategy, independent of microarray analysis, relies on comparisons of 

noncoding DNA between different species – for example, human and mouse (20, 21).  The 

noncoding regions upstream of homologous genes in several species are compared, and used as a 

guide for discovering regulatory elements.  Conserved noncoding stretches are likely to contain 

regulatory elements; comparisons of these sequences (using the methods described above, for 

instance) can identify these elements. 

 

OUTLOOK 

 Bioinformatics can revolutionize the field of gene regulation by predicting regulatory 

elements in silico.  Two independent approaches are available, one utilizing whole-genome 

expression profiles, and the other relying on conservation of important regulatory regions among 

homologues.  The two methods may be used in a complementary fashion: cross-species comparisons 

can be used to demarcate possible regulatory motifs (or conserved regions likely to contain them) 

either before or after microarray clustering and promoter sequence comparison.  Such an integrated 

approach would provide a check on the quality of results, as significant regulatory motifs should be 

detected by both methods.  It would also simplify the task of promoter recognition in higher 

eukaryotes by distinguishing between junk and non-junk portions of noncoding regions. 



In addition to contributing to the prediction of regulatory element location, microarray data 

can be used to predict promoter function.  As a result of the microarray experiment, the putatively 

coregulated gene clusters are known to be affected by a given stimulus or set of experimental 

conditions.  This functional information is only limited by creativity in the design of microarray 

experiments, and becomes more complex as advances in microarray clustering and analysis are 

made; notably, Qian et al. report an approach for clustering of time-shifted and inverted gene 

expression profiles (22).  An accompanying challenge to using microarray data for the functional 

annotation of promoters is the development of appropriate database methods. 

Some have suggested that the detection of regulatory elements would benefit from a joint 

modeling of DNA physical structure along with sequence (23).  The rationale for this approach is that 

transcription factor proteins recognize regions of DNA with specific conformational, bendability, and 

protein-induced deformability properties (24, 25).  Along the same lines, separate algorithms could 

be devised to find particular classes of transcription factors with specific binding properties.  Thus, a 

synergistic relationship between structural biology and bioinformatics would be created: biochemical 

and biophysical characterization of transcription factors and their binding sites would lead to the 

creation of improved algorithms for detecting novel regulatory elements, which (upon further 

analysis) would in turn contribute to our biochemical and biophysical understanding.  An important 

finding demonstrating the value of additional knowledge about noncoding DNA is that, in 

vertebrates, gene promoters are often found near CpG islands; this information has been successfully 

exploited for large-scale mapping of human promoters (26). 

 Finally, computational prediction of regulatory elements must be verified in the laboratory.  

Reporter genes can be placed under control of the putative control element and used in various 

functional assays in vitro or in vivo in a transgenic system (27).  An important application of the 

discovery of novel regulatory elements would be the discovery of novel transcription factors.  Armed 

with a knowledge of the transcription factor’s target DNA sequence and a reporter gene construct for 

assaying activity, DNA affinity chromatography methods could potentially be employed to isolate 

the desired transcription factor. 

Overall, progress in the field of gene regulation has been (and will continue to be) greatly 

accelerated via a partnership with bioinformatics.
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