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Introduction & Background 
Protein packing density is a critical feature for scientists to characterize; the efficiency of 
packing, in terms of sheer volume of atoms per volume of space, is thought to be 
determined primarily by hydrophobicity concerns, and has implications for protein 
stability, structure, and thus function.1 The traditional approach to studying packing 
density has been to (1) identify the locations (ie: x, y and z coordinates) of atoms in a 3D 
structure of the protein using, for instance, crystallization, (2) estimate the volume of the 
structure, generally using Voronoi polyhedra or some variant (perhaps using a probe-
sphere to determine surface features), (3) divide a theoretical minimum volume for the 
structure (represented by the van der Waals volumes of its atoms) by the calculated actual 
volume to determine the packing efficiency.2 Studies of packing density using this 
protocol have suggested that the interior core of a globular protein is generally very 
dense, but is not uniformly packed.2 Other studies examining the packing of membrane 
protein α-helices have shown that they are of varying densities in the transmembrane 
(TM) region, but that the possibility for very tight packing exists and is often realized.3 
Furthermore, a coarse-grain modeling study, which simplifies the task of representing a 
protein by operating at a large scale (ie: having the “grains” represent residues rather than 
atoms) also shows coordinating residues packing into the most efficient possible 
configuration.4 It is to be expected that Nature would  
 
place a premium on developing compact proteins; such structures are stable and regular 
in their behavior, and furthermore are necessary to maintain the integrity of the 
hydrophobic core against the invasion of water molecules. On the other hand, low-density 
regions, characterized by cavities and voids, can potentially allow for movement of the 
protein (ie: it can change its shape)3 or, if close to the protein surface, can serve as 
docking regions for ligands .1 In any case, it seems that the packing density is closely 
related to the structural features of the protein and functionality of the local region under 
consideration. 
 
Proposal 
My proposal stems from the realization that this relationship does not observe a strict 
causality. The current protocol of determining first the structure, then the volume, and 
finally the packing density fits in with our understanding that the density can be 
completely determined by the other two components, and so we should calculate them 
first. I suggest that we can combine packing density with volume information to 
conjecture possible three-dimensional structures for the protein, the reverse of the process 
listed above. While working in this direction will not yield an absolute answer – there can 
be a variety of structure which have the same packing density – it may yield interesting 
results and help to steer structural models in the right direction. 
 
The advances I would draw upon in arguing for the feasibility of this “reverse-
determination” technique include a recent proof5 of Kepler’s 400-year-old packing 



conjecture and a systematic characterization of the radii and volumes of atomic groups in 
proteins.6 
 
Evidence leading to the proposal. 
Kepler’s conjecture posits that the closest packing one can achieve for an infinitely large 
collection of same-sized spheres is that of a face-centered cubic (fcc) lattice, essentially 
the arrangement one sees oranges stacked in at a supermarket. In order to prove the 
conjecture Thomas Hales had to rule out all alternative configurations for a local area by 
showing that they were less efficiently packed than the fcc (in the process he developed a 
new variant of the Voronoi methodology called “star decomposition”). Essentially, Hales 
starts with a number of objects, generates configurations in which they could fit together, 
and then thresholds to pick out configurations (in this case a configuration) which have a 
particular packing density.5 He begins with a target density and emerges with a structure. 
Elimination of unsatisfactory configurations is largely automated; most of the work here 
could be done using linear programming and employing general arguments. In fifty cases 
out of 5094 to start, Hales had to look in detail at the structure to determine its packing 
density, but this was only necessary because he had a very stiff requirement, and a single 
exception to threshold would have been vital. Presumably, for our purposes, we would be 
happy to have a reasonably-sized but varied set of structure returned. 
 
Interestingly, researchers recently tackled a problem similar to Kepler’s, relating to the 
optimal packing of strings instead of spheres, and emerged with a helical arrangement 
bearing both qualitative and quantitative similarities to the α-helices found in proteins.7 In 
this case, the computational study was done initially and it was only retrospectively found 
to have biological significance. I propose using the technique as a prospective tool. 
 
In order to achieve this, it will be necessary to have a good handle on the “objects” to be 
fed into Hales’s algorithm. Recent efforts to definitively quantify the sizes of protein 
components are vital in this respect. An initial study made in 1999 characterized thirteen 
major atomic groups which form the building blocks for amino acids; where these 
thirteen groupings are based purely on chemical characteristics (number of covalent 
bonds, hydrophobicity, etc.) a subsequent study clustered the major groups based on 
numerical volume data, and made the case for expanding the number of groupings to 
eighteen.8 These groups, or ‘types’ are said to be capable of representing all of the 
various kinds of packing seen in proteins.  
 
Potential pitfalls. 
A first slightly confusing point is whether we would want to use the types, which are 
already biased to be in a particular configuration, or rather simply use van der Waals data 
to translate information from the primary sequence into atoms which can be arranged in 
an optimal configuration by Hales’s system. The types have the advantage of 
representing larger-scale building blocks of amino acids, whereas van der Waals radii 
refer to single atoms. Another stumbling block is the necessity for specification of some 
of the structure (namely the amino-acid sequence) prior to execution of the algorithm. We 
would certainly not want to emerge with configurations which disregard the primary 
structure of the protein, and if this constraint could be implemented, it would hopefully 



keep the number of emergent structures manageable. We should hope, therefore, that we 
are allowed to enter sequence data to begin with. Of course, the most important question 
of all is, where do we set the packing threshold? We have seen that Nature seems to favor 
close packing, but there is ostensibly no reason not to target a  lower-density 
configuration. In addition, since Hales’s algorithm was explicitly designed to solve a 
local packing problem, we could conceive of setting different thresholds for different 
parts of the protein, thereby emulating experimental results.  
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