
Exploring Similarities of Conserved Domains/Motifs

Sotiria Palioura ∗

Abstract

Traditionally, proteins are represented as amino acid sequences. There are, though, other
(potentially more exciting) representations; e.g. each protein can be viewed as (maybe partially)
containing some conserved domains/motifs. Using this “functional representation” of proteins
we are suggesting a method for exploring similarities of conserved domains/motifs.

1 Introduction

Recent advances in genome sequencing projects and protein crystallization techniques have
presented bioinformatics with the challenge of storing and organizing a vast amount of molecular
biology information. Pilot databases have been developed for easy storage and retrieval of the data
generated by functional and structural genomics efforts [1]. Most such databases have been built
by focusing on protein-protein similarities in terms of several evolutionary or structural protein
characteristics. Currently, there exist protein classifications with respect to evolutional homology
(COGs), conserved domains (CDD), structural fold similarities (SCOP) and gene expression pat-
terns (GEO) [2]. Such classifications allows us to survey and process the stored information by
providing a more concise representation of genomic and proteomic data.

Several supervised and unsupervised machine learning techniques have been explored for data
mining in the above databases (k-means, hierarchical clustering algorithms, self-organizing maps,
etc.) [3]. The goal of the above algorithmic approaches is to facilitate the analysis of exist-
ing datasets by revealing biologically meaningful information in a systematic way. Such observa-
tions can subsequently be incorporated into gene and protein annotation search programs, such
as BLAST and FASTA, thus leading to more accurate functional and structural prediction of
uncharacterized sequenced proteins.

Towards resolving the challenging genome and protein annotation problem, we are proposing
a data mining technique that could provide invaluable insight into protein function. The method
explores the frequency of co-occurrence of pairs of conserved domains/motifs in the proteome. It
takes advantage of a standard data mining technique for large datasets based on matrix multipli-
cation. A “functional representation” of a large number of proteins in the conserved domain/motif
space serves as input to the algorithm. The approach is systematic, automated and can be easily
adjusted to accommodate new proteomic information.

∗Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520,
sotiria.palioura@yale.edu.

1



2 Methods

The “heart” of our method is the construction of a protein vs. conserved domain/motif1 matrix
(from now on we will call this matrix A). The rows of A denote proteins and the columns of
A denote conserved domains/motifs. A is an m × n matrix, where m is the number of proteins
that we examine and n the number of conserved domains/motifs in our database. The (i, j)-th
element of A (denoted by Aij) represents the “presence” or “absence” of conserved domain/motif
j in protein i. We allow Aij to be any number from 0 to 1, where a fractional value represents
“partial” presence of the conserved domain/motif in this protein; we elaborate on this later.

In order to create A, we will use the SMART database and NCBI’s Conserved Domain Database
(CDD). We unfortunately need both databases; a Conserved Domain (CD) search in CDD only
recognizes conserved domains and not small functional motifs [6]. For the latter task we will use
the SMART database [7]. SMART will also provide explicit amino acid sequences for more than
400 domain families to our algorithm2.

We will now describe in detail the construction of A (m will be in the range of 50000-60000
and n > 400). A is initialized to be an all-zeros matrix.

Step 1 For all the domain families in SMART find their corresponding amino acid sequence.

This step is trivial; SMART provides a table of domain families with links to their amino
acid sequence.

Step 2 We run queries in CDD using an amino acid sequence that denotes a domain family.

Here we note that we will use the Expect advanced option in our CDD search. More specifi-
cally, we will run queries for a few possible e-values of Expect, ranging from 10−6 up to 1 (we
do not use higher e-values in order to avoid false positives, see [6]).

The output of the query (for some particular e-value) consists of proteins containing the
domain family. Depending on the e-value, the protein might contain a slight variation of
the domain family; e.g. some amino acids might be different or misaligned. If the output of
a query is empty we run the same amino acid sequence in the SMART database, since the
sequence might be a small motif and thus not recognizable by CDD. Again, SMART outputs
a list of proteins containing this motif.

Step 3 For every protein i that contains the domain family j we set the “score” Aij .

Setting the “score” Aij is not obvious. One possibility would be to set Aij = 1 if the query
on domain family j returned protein i with e-value= 10−6 and 0 otherwise, meaning that we
only account for the presence3 or absence of the domain family in the protein. Obviously, we
could determine presence or absence by using any of the aforementioned e-values. A more
meaningful representation, capturing the partial presence of a domain family in the protein,
emerges by relaxing the initial scoring scheme, e.g. by setting Aij = 0.95 instead of 0 if the
query on domain family j returned protein i with e-value= 10−4 etc. Deciding the exact
scoring scheme will happen at a later stage by training a generic scoring scheme on our data.

Repeat Steps 2 and 3 for all domain families
1There is no clear distinction between the terms motif and conserved domain. Generally, a motif is considered to

be a small conserved amino acid sequence (even of length 3) while a conserved domain is a much longer sequence.
For more details, see [6].

2We use the term domain families to denote conserved domains and motifs.
3Indeed, we only allow a very strong presence of the domain family, otherwise we consider it absent.

2



We should also note that the construction of the above matrix can be automated by writing
small scripts (using Perl) to mine the CDD and SMART databases.

As mentioned in the introduction, our goal is to mine interesting correlations between domain
families; more specifically, to identify for each domain family the domain families that are its nearest
neighbors. We will measure the proximity of two domain families by examining their pattern of
co-occurrences in the proteins of the dataset (as denoted by matrix A).

There are a few obvious candidates for measuring the proximity of two domain families based
on their respective patterns. We denote by p the m-dimensional vector of the first domain family
and by q the m-dimensional vector of the second domain family. Then, |p − q| is defined as the
Euclidean distance between the two vectors4. Obviously, if |p− q| is small, the two domain families
are similar in the sense described above.

Instead of this -more intuitive- distance measure, we will borrow a different measure from
Data Mining Applications in Computer Science; namely the outer product of p and q. Indeed,
experimental evidence in a variety of datasets has shown that this measure is superior to the ones
mentioned above. We remind that the outer product of p, q is defined as:

p · q =
m∑

i=1

piqi = |p||q| cos(p̂, q)

where pi and qi are the elements of p and q, |p|, |q| are the lengths of p and q5 and cos(p̂, q) is the
angle between p and q. Intuitively, if this angle is small (in which case the cosine of the angle is
close to 1), then we know that the two vectors (and thus the corresponding domain families) are
“close”. Thus, if we compute p · q, |p| and |q| we can compute

cos(p̂, q) =
p · q
|p||q|

Surprisingly, computing the dot products for all possible pairs of domain families is very easy:
it amounts to the multiplication of two matrices, AT and A. We remind that AT denotes the
transpose of matrix A, that is a matrix whose rows are columns of A and vice versa. It is easy to
see that if A is an m× n matrix, AT is an n×m matrix.

We now give an example using a generic matrix A. Say that A is a matrix describing 8 proteins
with respect to 4 domain families, e.g.

A =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

p51 p52 p53 p54

p61 p62 p63 p64

p71 p72 p73 p74

p81 p82 p83 p84




Then,

AT =




p11 p21 p31 p41 p51 p61 p71 p81

p12 p22 p32 p42 p52 p62 p72 p82

p13 p23 p33 p43 p53 p63 p73 p83

p14 p24 p34 p44 p54 p64 p74 p84




4We could also use the 1-norm or any other p-norm, but we do not elaborate on this issue.
5We remind that |p|2 =

∑m

i=1
p2

i

3



Finally, the product AT A is equal to

AT A =




∑8
k=1 pk1pk1

∑8
k=1 pk1pk2

∑8
k=1 pk1pk3

∑8
k=1 pk1pk4∑8

k=1 pk2pk1
∑8

k=1 pk2pk2
∑8

k=1 pk2pk3
∑8

k=1 pk2pk4∑8
k=1 pk3pk1

∑8
k=1 pk3pk2

∑8
k=1 pk3pk3

∑8
k=1 pk3pk4∑8

k=1 pk4pk1
∑8

k=1 pk4pk2
∑8

k=1 pk4pk3
∑8

k=1 pk4pk4




Now, we divide each element of AT A by the product of the lengths of the vectors that form it.
We will abuse notation and call this new matrix cos(AT A), since it essentially denotes the cosine of
the angle between every pair of domain families that we examine. We will not explicitly state every
element of cos(AT A), but instead we will give the formula for

(
cos(AT A)

)
ij

, i = 1 . . . 4, j = 1 . . . 4

(the (i, j)-th element of cos(AT A))

(
cos(AT A)

)
ij

=
∑8

k=1 pkipkj√∑8
k=1 p2

ki

√∑8
k=1 p2

kj

Observe that the (i, j)-th element of cos(AT A) denotes the proximity of domain families i and
j. Thus, by observing cos(AT A) (a 4×4 matrix) we can deduce the proximity of any pair of domain
families. Finally, we note that the (i, j)-th element of cos(AT A) is equal to the (j, i)-th element of
cos(AT A); obviously, the proximity of the domain families i, j and j, i is the same6.

It should now be clear how to generalize the above scheme in order to handle a large number of
proteins and domain families. A would be an m×n matrix, AT an n×m matrix and their product
AT A an n×n matrix7. We remind that n is the number of domain families that we are examining;
thus, cos(AT A) is a matrix of domain families vs. domain families and its (i, j)-th element denotes
the proximity of the i, j domain families.

To help the reader understand the process, we note that the diagonal elements of cos(AT A) are
all equal to 1 (as expected, since they denote the distance between the same domain family!). We
are intending to process the above matrix as follows:

1. For every row of cos(AT A) sort its elements in decreasing order.

2. For every row of cos(AT A) plot the sorted sequence (angles calculated vs. domain families).

A number of useful observations can emerge from the above processing. For every domain
family, we can identify the domain families that are its nearest neighbors (meaning a domain
family that has a similar occurrence pattern across all proteins), as well as the domain families
that are its farthest neighbors. Intuitively, this should reveal information about the functions
associated with the domain families and possibly (hopefully!) new and interesting relationships
between them.

3 Discussion

We will now briefly discuss a few issues related to the previous technique. The number of
proteins used in the matrix will depend on the amount of the proteome being characterized in

6This happens because cos(AT A) is always a symmetric matrix independently of the structure of A.
7Creating AT A as well as computing cos(AT A) is a trivial task, e.g. using a software like Matlab.

4



terms of conserved domains/motifs in the respective databases. The method can be used for a very
large number of proteins, e.g. we can handle 200,000 proteins. In fact, using more proteins should
return more accurate results.

Since the method is highly systematic and automated, newly characterized proteins and con-
served domains/motifs can easily be incorporated in our matrix. However, the unfiltered use of a
vast number of proteins may bias the results, because of a potential over-representation of some
types of homologous proteins in the sample. Therefore, scaling the proteins used in the matrix
must be done with respect to their origin and homology.

This method opens new perspectives in scoring protein similarity, not only in terms of amino
acid sequence, but also in terms of co-occurring conserved domains/motifs. In particular, we could
also apply this technique using secondary structural elements and/or folds instead of conserved
domains/motifs to characterize the proteins. Thus, a hybrid scoring scheme assessing protein
similarities could be developed, combining information from amino acid similarity searches, domain
families co-occurrences and protein folds. The weight of each of these aspects in the final scheme
could be determined by training the scoring scheme on the existing database. The potential of
such a scheme is clear; it could aid researchers to focus on experiments that are more meaningful
from a biological viewpoint, thus rendering experimental approaches highly efficient with respect
to both time and resources.

Finally, we conclude by mentioning another exciting possibility: we could use clustering algo-
rithms (spectral, k-means or other more heuristic approaches) in our matrix A in order to cluster
the proteins using their representation with respect to conserved domains/motifs. This clustering
would essentially be a functional classification of the proteins.

Acknowledgements: I would like to thank Petros Drineas for many helpful discussions and
for explaining the Computer Science approach to Information Retrieval.

References

[1] Luscombe N.M., Greenbaum D. and Gerstein M.(2001) What is Bioinformatics? A Proposed
Definition and Overview of the Field, Methods Inform Med, 40, 346-358.

[2] Gerstein M. (2000), Integrative database analysis in structural genomics, Nature Structural
Genomics, 7, 960-963.

[3] Gerstein M. and Jansen R. (2000) The current excitement in bioinformatics-analysis of whole-
genome expression data: how does it relate to protein structure and function?, Current Opinion
in Structural Biology, 10, 574-584.

[4] G.H.Golub and C.F.Van Loan, Matrix Computations, Johns Hopkins University Press, Lon-
don, 1989

[5] Schultz J., Copley P.R., Doerks T, Ponting C.P. and Bork P. (2000) SMART: a web-based tool
for the study of genetically mobile domains, Nucleic Acids Research, 28, 231-234.

[6] http://www.ncbi.nlm.gov/Structure/cdd/cdd.shtml

[7] http://www.smart.embl-heidelberg.de

5


