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Whole Cell Simulations:

An exponential increase in biological data and in computational power allow for an
integrative approach to molecular and cellular biology

Massive amounts of biological data have been obtained in recent years from genome

sequencing as well as from proteome, transcriptome, and metabolome projects, among others.

The rapidly growing field of bioinformatics uses computational techniques to analyze, organize,

and understand all of this vast data which comes from heterogeneous sources [1].  Once an

organism’s genome is fully sequenced and its gene products have been thoroughly identified and

even classified into biochemical pathways, the next logical step is to use this organized set of

information to understand the overall behavior of the cell[2].  After all, the ultimate goal of

biology is not the generation of huge amounts of data (gene sequences, gene expression profiles,

functional analyses) in itself but to use this data to understand the processes of life at the cellular

and even organismal levels.

One way to use the tools of bioinformatics to understand life at more complex levels is to

create computational simulations of whole cells.  Just imagine the possibilities of computational

models that can accurately predict the dynamic behavior of a cell.  Questions could be answered

about how a cell would behave if its environment were changed or if one of its genes were

knocked out or over-expressed.  Even more complex possibilities could be addressed in silico.

For example, what genetic changes could be made to cause a cell to exhibit a certain

behavior[2]?  Although such simulations might not yield exact results, they would allow

scientists to design better hypotheses for experimental investigations.
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In addition to helping one elucidate more clear hypotheses, creating biological

simulations would provide a theoretical framework that allows experimental observations to be

corroborated with experimental conclusions[3].  Leloup and Goldbeter, who modeled circadian

rhythms in Drosophila, indicate several other advantages to biological modeling.  Such models

would allow the analysis of complex situations with multiple, coupled variables, increase the

ability for determining the quantitative and qualitative effects of key parameters in living

systems, and allow questions to be asked which are difficult to address experimentally.  In

addition, such models could yield surprising predictions with counterintuitive explanations[3].

An increase in computing power has made possible the design of various kinds of

simulations in recent years.  A simple simulation of water molecules that once took two weeks to

perform on a supercomputer in 1986 can now be run on a desktop computer in less than two days

[4].  Biochemical reactions have been simulated on computers since the 1940s [5] but the

increased processing speed of computers has made more complex modeling possible today.  A

range of metabolic pathway modeling has already been achieved (for examples: [6, 7]) but are

only a first step towards whole cell simulation.

Currently, attempts are being made to integrate genomic, proteomic, and biochemical

pathway information with computational tools to

create simulations of entire cells [8].  Table 1

shows a list of some of the resources available

from projects that are underway.  These projects

must address a variety of technical issues

including how to take data and construct it into a

model.

Table 1: Partial List of Simulation Software Tools

E-Cell: http://www.e-cell.org

Virtual Cell: http://www.nrcam.uchc.edu

DBSolve: http://websites.ntl.com/~igor.goryanin

Gepasi: http://www.gepasi.org

MCell: http://www.mcell.psc.edu

CellML: http://www.cellml.org

Adapted from [8].
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Goryanin et al. created a program called DBSolve, written in C++, to respond to the

growing demand of making models[9].  Their software simplifies the process of deriving and

then analyzing models from metabolic reconstructions.  GEPASI is another tool being developed

to design models of metabolic and chemical pathways and it too includes analytical and

optimization tools[8].  These tools are useful components of creating a more robust simulation of

a cell, but are not actually whole cell simulators.

The E-CELL project was initiated in 1996 in Japan, after the publication (by TIGR) of

the entire genome sequence of Mycoplasma genitalium which has the smallest known genome

(580 kb) and the smallest number of genes (~480)[2].  Having such a small number of genes to

work with makes the task of whole cell modeling more within grasp.  Tomita et al. took up the

challenge of developing an integrative model that incorporates gene regulation, metabolism and

signaling [10].  Their work was a broadening of previous work which primarily dealt with

subsystems of a cell.  Although previous models included complicated biochemical pathways

(many of which interconnect), they could not account for the influence of cellular processes such

as gene regulation and the cell cycle.  In addition, their models were often highly qualitative.

E-CELL, written in C++, uses a set of reaction rules and numerically integrates the

differential equations described in these rules.  It was used to make a model based on only 127

genes from M. genitalium  sufficient for transcription, translation, energy production, and

phopholipid synthesis.  The program established a virtual self-surviving cell (SSC) that takes up

glucose, metabolizes it through glycolysis and produces ATP as an energy source.  The ATP is

consumed for protein synthesis as the 127 genes are transcribed and translated.  Proteins and the

cell membrane are designed to degrade over time so more protein and phospholipds must be

synthesized.  There are a total of 495 reaction rules that govern the cellular processes.  This

simple model already led to an unexpected, biologically interesting observation about

intracellular ATP levels [2].
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Another whole cell simulator, called the Virtual Cell, was developed by Schaff et al. to

allow biologists with little training in mathematics to use computational cell biology [8].  The

software can accommodate structural information in its simulations and may prove useful in

considering biological data such as localization of proteins and compartmentalization.  Both

Virtual Cell and E-CELL have simple and helpful graphic user-interfaces.

Although this recent generation of whole cell simulators are promising, they have many

limitations.  The vast amounts of data which still must be considered in accurate models of entire

cells include levels of gene expression, amounts of post-transcriptional and post-translational

modifications, changing cellular volumes, subcellular localization, among others.  In addition,

incorporating the diverse kinds of data that are available (from digital microscope images to gene

expression profiles) provides a great challenge.  Another issue which should be considered as

these software tools are developed is the possibility of standardizing components of models so

that simulations created by different groups can be joined together.

Despite the current limitations in whole cell simulation, a forward thinking biologist may

look to the future when more complete cell and even organismal simulators have been

established.  James Bassingthwaighte recently wrote, “The time has arrived in biological science

to put it all back together . . . the advances are so rapid, the knowledge so detailed, and the scope

of the new information so broad, that the consequences of the discoveries are often obscured by

the complexity of the systems being elucidated[11].”  The challenge now before biologists is to

assimilate diverse pieces of biological data to yield a product that is greater than the sum of its

parts.
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