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Introduction 
Multiple Sequence Alignment (MSA) is a critical 
tool for phylogenetic analysis, homologous gene 
finding, and gene clustering.  The most sensitive 
method for MSA was first described by Smith-
Waterman algorithm (SW) (1981)1 and improved 
by Gotoh (1982)2.  The SW algorithm represents 
the degree of similarity between each pair of the 
sequences with a similarity score.  A 
straightforward implementation calculates this for 
each query sequence-database sequence pair 
and is accordingly computationally intensive: For a 
query of length m and a database sequence of 
length n, the matrix requires a running time 
proportional to mn. 
  
As nucleotide databases double in size every 15 
months3, the computational resources required for 
sequence database searches will rise 
exponentially.  Although computing resources are 
also increasingly exponentially, the demands of 
multiple sequence alignment will soon outstrip 
those gains.  Thus, MSA of databases will take a 
longer time to perform. 
 
We can improve alignment times by either 
reducing the alignment sensitivity or by developing 
specialized hardware.  Currently, the first solution 
is implemented in heuristic methods such as 
FASTA4 and BLAST5.  These algorithms, by 
hashing and subdividing the sequences, are up to 
40 times faster than straightforward 
implementations of SW.  However, they are less 
sensitive to distantly related sequences and hence 
biologically relevant information can be lost.  The 
second solution comes in the form of parallel 
processing hardware such as Paracel’s 
GeneMatcher and Compugen’s Bioccelerator.  
However, this method has the setback of being 
prohibitively expensive for most users. 
  
Two recent papers significantly reduce SW 
calculation times in novel fashion.  The first, 
“Computational space reduction and parallelization 

of a new clustering approach to large groups of 
sequences” (Trelles, 1998)6 relies on a clustering 
approach to remove unnecessary pairwise 
calculations.  The second, “Six-fold speed-up of 
Smith-Waterman sequence database searches 
using parallel processing on common 
microprocessors” (Rognes and Seeberg, 2000)7 
takes advantage of commonly available Single-
Instruction, Multiple-Data (SIMD) processors to 
perform parallel calculations without specialized 
hardware.  The first approach yields a maximum of 
98% speed reduction with eight parallel 
processors.  The benchmark for this comparison is 
the SSEARCH algorithm (Pearson, 1991)8, a 
standard variant of SW.  The second approach 
allows us to reduce the number of processors to 
one.  The integration of these two approaches 
optimizes SW MSAs, with optimization being the 
best combination of speed, sensitivity and cost.  
 
Computational Space Reduction (CSR) 
The innovative method described by Trelles et al 
relies on finding the subset of database 
sequences that fall under a ‘Special Interest 
Group’ (SIG) and comparing the similarity scores 
to two similarity thresholds: TI and TS.  The SIG is 
found by randomly selecting a ‘leader’ sequence Xi 
from the entire set of sequences {X1, X2, … Xn}.  A 
set of similarity scores Si,j is then computed 
between the leader and the remaining n-1 
sequences, which are represented as Xj.   
 
TI and TS now come into play.  TI is the sequence 
similarity threshold as described by Sander and 
Schneider (1991)9; it is dependent on the length of 
the alignment.  Effectively, it represents the 
minimum value indicates meaningful similarity 
between two sequences.  TS is a higher threshold 
meant to provide a “safety” level of similarity; any 
sequence with a score above TS has a very high 
certainty of being similar to the query sequence. 
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Each Si,j is compared against TI and TS and three 
possible scenarios result: 

1) Si,j ≥ TS.  Xj belongs to the SIG led by Xi. 
2) Si,j < TI.  Xj does not belong to the SIG led 

by Xi. 
3) TI ≤ Si,j <TS.  Xj potentially belongs to SIG.  

These sequences are grouped into a 
“second comparison round” and must re-
compared. 

 
Scenario 2 is the key to reducing the 
computational space.  Because Xj is not minimally 
related to Xi, it is assumed that Xj is unrelated to 
all of the sequences in SIG.  None of the pairwise 
similarity calculations between Xj and the SIG 
sequences will then be performed.  In the optimal 
case, Trelles et al found that this removed 90.31% 
of the calculations.  However, it is critical to select 
a correct TI – if the low threshold is too high, then 
related sequences will be missed and this 
approach is ineffectual. 
 
Sequences falling under Scenario 3 are re-
compared with the subset of sequences found in 
Scenario 1.  For each of these sequences, if the 
comparison indicates that Sj,j ≥ TS then the 
sequence belongs to the SIG.  Otherwise, discard 
the sequence by the rules of Scenario 2. 
 
In many cases, more than one SIG will exist for 
the database.  Once the membership of each SIG 
is found, a complete cross-similarity matrix for 
each SIG must be computed in the traditional SW 
manner.  Trelles et al characterize the MSA as two 
tasks, with Task 1 (T1) being the determination of 
the SIGs and Task 2 (T2) being the determination 
of cross-similarity matrices.  In their experience, 
T2 is the most time-consuming step.  However, 
these tasks are essentially the same as both rely 
on determining a similarity score by SW methods.  
Thus, the SIMD method described by Rognes and 
Seeberg can be applied to reduce hardware cost.   
 
Single-Instruction Multiple Data (SIMD) 
Computation of Si,j 
SIMD processors were first introduced under 
Intel’s Pentium MMX brand in 1997.  Other 
companies followed suit and now AMD, HP, Sun 
and a host of other companies produce SIMD 
processors, making the technology vastly 
available and more importantly, inexpensive 
(Rognes and Seeberg, 2000).  
 

The breakthrough of SIMD architecture is the 
ability to divide the 64-bit registers into eight 8-bit 
registers that perform calculations simultaneously.  
For operations that can exploit this ability, this 
represents a potential 8-fold increase in speed.  
However, each calculation within the Si,j matrix, as 
implemented in a straightforward fashion, depends 
on the calculations from one step earlier.  This 
prevents parallelization. 
 
Earlier approaches overcame this obstacle by 
performing calculations along the minor diagonal  
as these are independent (Hughey, 1996; 
Wozniak, 1997)10,11.  Rognes and Seeberg, on the 
other hand, perform calculations parallel to the 
query sequence.  This does not remove cell 
dependency, but they overcome the problem by 
relying on a SWAT-like optimization.  In SWAT 
(Green 1993)12, if a given cell has a value of 0 and 
the local cell-set maximum h is less than the sum 
(q + r) of the gap-open penalty q and the gap 
extension penalty r, then the entire column or row 
will stay at zero.  This is only effective when r is 
large.  If the entire column or row is zero, then cell 
dependencies are removed and calculations can 
be avoided.  Else wise, a straightforward 
implementation is called for, but even then 
represents only a small portion of the entire matrix.  
This method of calculations is advantageous 
because it simplifies and speeds up the loading of 
substitution scores from memory.   
 
A Solution to Computational 
Bottlenecks and Inefficiencies 
A difficulty arising from the division of the 
processor register into eight sub-registers is that it 
limits the values that we can process to 0-255.  
For most matrices, this is not a problem as the 
overall similarity score will be less than 255.  
However, in the calculation of the T2 SIG cross-
similarity matrices, in which sequences that have 
been clustered together are all compared in 
pairwise fashion, it is possible that the score will 
exceed 255.  Rognes and Seeberg solution is to 
re-compute the score without the SIMD 
optimization.  However, this potentially removing 
the benefits of integrating the SIMD and CSR 
approaches because whereas in the CSR 
approach there were eight processors that could 
recomputed T2 tasks simultaneously; in SIMD 
there is only one processor. 
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Fortunately, there are inefficiencies in the CSR 
approach and the integration of both approaches 
may allow us to capitalize on them, thereby 
improving on both methods.  Trelles et al found 
that the marginal returns on increasing the number 
of processors rapidly declined.  Tracing the 
method, they found the cause: T1 tasks often fail 
to fully occupy the processors.  If the number of 
processors exceeds the number of T1 tasks, then 
adding more does no good. 
 
The solution to this inefficiency is to embed, in the 
software, algorithms for setting up dynamic 
queues of both tasks waiting to be performed and 
idle processors.  Moreover, T1 and T2 tasks 
should not be performed in separate batches; the 
fastest computations came when T2 tasks 
generated by early T1 calculations were loaded 
onto processors that were idle during the T1 
phase.  
 
Integrating these two solutions, it may then be 
possible to dynamically reprogram the algorithm 
such that if any 8-bit registers were idle during any 
phase, they could be combined to re-compute 
cross-similarity matrices whose scores exceeded 
255.  The limit to the score would now be 65,535 
and breaching this limit is very unlikely.  The 
earlier analysis indicates that in many cases, 
scores will be less than 255.  The minimal 
requirement for reaching the 16-bit register limit 
are two identical sequences of 65,535 units in 
length.   
 
Discussion 
In their paper, Rognes and Seeberg report that 
their single Pentium III 500 MHz processor 
generated a speed up factor of 6.2 over the 
SSEARCH.  This increase in speed applied 
equally to both short and long sequences.  The 
average number of cell updates was 156 million 
per second.  The fastest search algorithm, the 
NCBI BLAST 2.0.10, was 7.5 times faster, or 87% 
more efficient.  However, it must be noted that the 
BLAST search is less sensitive. 
 
With the CSR approach, Trelles saw a 93% 
reduction in CPU-time.  If the integrated approach 
can fully capture that reduction, for the first time it 
will be possible for the SW algorithm to be faster 
than the newest, most sensitive BLAST algorithm. 
 

Moreover, Rognes and Seeberg indicate that a 
symmetric multiprocessing computer with eight 
Pentium III 600 MHz Xeon processors can 
potentially achieve 1500 million cell updates per 
second.  This represents a 1.2 increase in speed 
per processor and surpasses the speed of a 
MasPar MP-2 computer with 16 384 CPUs.  
Perhaps more significantly, the eight processors 
represent 64 8-bit registers, thus completely 
removing the bottleneck that was encountered in 
re-computing T2 matrices.  In the extreme case of 
scores exceeding 65,535, we can simply 
recomputed with 3, or 4 registers which yield score 
limits of (224-1) and (232-1) respectively.  Limits of 
this size allow us to simultaneously align entire 
genomes.  The main concern now would be the 
cost of the multiprocessing computer as this brings 
us back to the original barrier of expensive 
hardware.   
 
This limitation can be overcome, however.  Even 
today, processors with 128-bit registers are now 
available in the form of PowerPC G4 processors.  
This represents 16 8-bit registers and with a 
robust algorithm, protein MSAs will not even need 
a multiprocessing computer to fully capitalize on 
the power of this integrated approach.   
 
Finally, a large, clustered network of inexpensive 
computers can also replace the multiprocessing 
computer.  This approach might see significant 
losses in sequence loading time reductions, but as 
databases grow, but as databases grow, this may 
represent the most cost-effective approach.  
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