
Frank Lau, MB&B 452

An Integrated Approach to Fast, Sensitive, and Cost-
Effective Smith-Waterman Multiple Sequence Alignment

Frank Lau
December 15, 2000

MB&B 452: Bioinformatics Module

Introduction
Multiple Sequence Alignment (MSA) is a critical
tool for phylogenetic analysis, homologous gene
finding, and gene clustering. The most sensitive
method for MSA was first described by Smith-
Waterman algorithm (SW) (1981)1 and improved
by Gotoh (1982)2. The SW algorithm represents
the degree of similarity between each pair of the
sequences with a similarity score. A
straightforward implementation calculates this for
each query sequence-database sequence pair
and is accordingly computationally intensive: For a
query of length m and a database sequence of
length n, the matrix requires a running time
proportional to mn.

As nucleotide databases double in size every 15
months3, the computational resources required for
sequence database searches will rise
exponentially. Although computing resources are
also increasingly exponentially, the demands of
multiple sequence alignment will soon outstrip
those gains. Thus, MSA of databases will take a
longer time to perform.

We can improve alignment times by either
reducing the alignment sensitivity or by developing
specialized hardware. Currently, the first solution
is implemented in heuristic methods such as
FASTA4 and BLAST5. These algorithms, by
hashing and subdividing the sequences, are up to
40 times faster than straightforward
implementations of SW. However, they are less
sensitive to distantly related sequences and hence
biologically relevant information can be lost. The
second solution comes in the form of parallel
processing hardware such as Paracel’s
GeneMatcher and Compugen’s Bioccelerator.
However, this method has the setback of being
prohibitively expensive for most users.

Two recent papers significantly reduce SW
calculation times in novel fashion. The first,
“Computational space reduction and parallelization

of a new clustering approach to large groups of
sequences” (Trelles, 1998)6 relies on a clustering
approach to remove unnecessary pairwise
calculations. The second, “Six-fold speed-up of
Smith-Waterman sequence database searches
using parallel processing on common
microprocessors” (Rognes and Seeberg, 2000)7
takes advantage of commonly available Single-
Instruction, Multiple-Data (SIMD) processors to
perform parallel calculations without specialized
hardware. The first approach yields a maximum of
98% speed reduction with eight parallel
processors. The benchmark for this comparison is
the SSEARCH algorithm (Pearson, 1991)8, a
standard variant of SW. The second approach
allows us to reduce the number of processors to
one. The integration of these two approaches
optimizes SW MSAs, with optimization being the
best combination of speed, sensitivity and cost.

Computational Space Reduction (CSR)
The innovative method described by Trelles et al
relies on finding the subset of database
sequences that fall under a ‘Special Interest
Group’ (SIG) and comparing the similarity scores
to two similarity thresholds: TI and TS. The SIG is
found by randomly selecting a ‘leader’ sequence Xi
from the entire set of sequences {X1, X2, … Xn}. A
set of similarity scores Si,j is then computed
between the leader and the remaining n-1
sequences, which are represented as Xj.

TI and TS now come into play. TI is the sequence
similarity threshold as described by Sander and
Schneider (1991)9; it is dependent on the length of
the alignment. Effectively, it represents the
minimum value indicates meaningful similarity
between two sequences. TS is a higher threshold
meant to provide a “safety” level of similarity; any
sequence with a score above TS has a very high
certainty of being similar to the query sequence.

Frank Lau
MB&B 452 2

Each Si,j is compared against TI and TS and three
possible scenarios result:

1) Si,j ≥ TS. Xj belongs to the SIG led by Xi.
2) Si,j < TI. Xj does not belong to the SIG led

by Xi.
3) TI ≤ Si,j <TS. Xj potentially belongs to SIG.

These sequences are grouped into a
“second comparison round” and must re-
compared.

Scenario 2 is the key to reducing the
computational space. Because Xj is not minimally
related to Xi, it is assumed that Xj is unrelated to
all of the sequences in SIG. None of the pairwise
similarity calculations between Xj and the SIG
sequences will then be performed. In the optimal
case, Trelles et al found that this removed 90.31%
of the calculations. However, it is critical to select
a correct TI – if the low threshold is too high, then
related sequences will be missed and this
approach is ineffectual.

Sequences falling under Scenario 3 are re-
compared with the subset of sequences found in
Scenario 1. For each of these sequences, if the
comparison indicates that Sj,j ≥ TS then the
sequence belongs to the SIG. Otherwise, discard
the sequence by the rules of Scenario 2.

In many cases, more than one SIG will exist for
the database. Once the membership of each SIG
is found, a complete cross-similarity matrix for
each SIG must be computed in the traditional SW
manner. Trelles et al characterize the MSA as two
tasks, with Task 1 (T1) being the determination of
the SIGs and Task 2 (T2) being the determination
of cross-similarity matrices. In their experience,
T2 is the most time-consuming step. However,
these tasks are essentially the same as both rely
on determining a similarity score by SW methods.
Thus, the SIMD method described by Rognes and
Seeberg can be applied to reduce hardware cost.

Single-Instruction Multiple Data (SIMD)
Computation of Si,j
SIMD processors were first introduced under
Intel’s Pentium MMX brand in 1997. Other
companies followed suit and now AMD, HP, Sun
and a host of other companies produce SIMD
processors, making the technology vastly
available and more importantly, inexpensive
(Rognes and Seeberg, 2000).

The breakthrough of SIMD architecture is the
ability to divide the 64-bit registers into eight 8-bit
registers that perform calculations simultaneously.
For operations that can exploit this ability, this
represents a potential 8-fold increase in speed.
However, each calculation within the Si,j matrix, as
implemented in a straightforward fashion, depends
on the calculations from one step earlier. This
prevents parallelization.

Earlier approaches overcame this obstacle by
performing calculations along the minor diagonal
as these are independent (Hughey, 1996;
Wozniak, 1997)10,11. Rognes and Seeberg, on the
other hand, perform calculations parallel to the
query sequence. This does not remove cell
dependency, but they overcome the problem by
relying on a SWAT-like optimization. In SWAT
(Green 1993)12, if a given cell has a value of 0 and
the local cell-set maximum h is less than the sum
(q + r) of the gap-open penalty q and the gap
extension penalty r, then the entire column or row
will stay at zero. This is only effective when r is
large. If the entire column or row is zero, then cell
dependencies are removed and calculations can
be avoided. Else wise, a straightforward
implementation is called for, but even then
represents only a small portion of the entire matrix.
This method of calculations is advantageous
because it simplifies and speeds up the loading of
substitution scores from memory.

A Solution to Computational
Bottlenecks and Inefficiencies
A difficulty arising from the division of the
processor register into eight sub-registers is that it
limits the values that we can process to 0-255.
For most matrices, this is not a problem as the
overall similarity score will be less than 255.
However, in the calculation of the T2 SIG cross-
similarity matrices, in which sequences that have
been clustered together are all compared in
pairwise fashion, it is possible that the score will
exceed 255. Rognes and Seeberg solution is to
re-compute the score without the SIMD
optimization. However, this potentially removing
the benefits of integrating the SIMD and CSR
approaches because whereas in the CSR
approach there were eight processors that could
recomputed T2 tasks simultaneously; in SIMD
there is only one processor.

Frank Lau
MB&B 452 3

Fortunately, there are inefficiencies in the CSR
approach and the integration of both approaches
may allow us to capitalize on them, thereby
improving on both methods. Trelles et al found
that the marginal returns on increasing the number
of processors rapidly declined. Tracing the
method, they found the cause: T1 tasks often fail
to fully occupy the processors. If the number of
processors exceeds the number of T1 tasks, then
adding more does no good.

The solution to this inefficiency is to embed, in the
software, algorithms for setting up dynamic
queues of both tasks waiting to be performed and
idle processors. Moreover, T1 and T2 tasks
should not be performed in separate batches; the
fastest computations came when T2 tasks
generated by early T1 calculations were loaded
onto processors that were idle during the T1
phase.

Integrating these two solutions, it may then be
possible to dynamically reprogram the algorithm
such that if any 8-bit registers were idle during any
phase, they could be combined to re-compute
cross-similarity matrices whose scores exceeded
255. The limit to the score would now be 65,535
and breaching this limit is very unlikely. The
earlier analysis indicates that in many cases,
scores will be less than 255. The minimal
requirement for reaching the 16-bit register limit
are two identical sequences of 65,535 units in
length.

Discussion
In their paper, Rognes and Seeberg report that
their single Pentium III 500 MHz processor
generated a speed up factor of 6.2 over the
SSEARCH. This increase in speed applied
equally to both short and long sequences. The
average number of cell updates was 156 million
per second. The fastest search algorithm, the
NCBI BLAST 2.0.10, was 7.5 times faster, or 87%
more efficient. However, it must be noted that the
BLAST search is less sensitive.

With the CSR approach, Trelles saw a 93%
reduction in CPU-time. If the integrated approach
can fully capture that reduction, for the first time it
will be possible for the SW algorithm to be faster
than the newest, most sensitive BLAST algorithm.

Moreover, Rognes and Seeberg indicate that a
symmetric multiprocessing computer with eight
Pentium III 600 MHz Xeon processors can
potentially achieve 1500 million cell updates per
second. This represents a 1.2 increase in speed
per processor and surpasses the speed of a
MasPar MP-2 computer with 16 384 CPUs.
Perhaps more significantly, the eight processors
represent 64 8-bit registers, thus completely
removing the bottleneck that was encountered in
re-computing T2 matrices. In the extreme case of
scores exceeding 65,535, we can simply
recomputed with 3, or 4 registers which yield score
limits of (224-1) and (232-1) respectively. Limits of
this size allow us to simultaneously align entire
genomes. The main concern now would be the
cost of the multiprocessing computer as this brings
us back to the original barrier of expensive
hardware.

This limitation can be overcome, however. Even
today, processors with 128-bit registers are now
available in the form of PowerPC G4 processors.
This represents 16 8-bit registers and with a
robust algorithm, protein MSAs will not even need
a multiprocessing computer to fully capitalize on
the power of this integrated approach.

Finally, a large, clustered network of inexpensive
computers can also replace the multiprocessing
computer. This approach might see significant
losses in sequence loading time reductions, but as
databases grow, but as databases grow, this may
represent the most cost-effective approach.

1 Smith, T.F. and Waterman, M.S. (1981) Identification
of common molecular subsequences. J. Mol. Biol., 147,
195-197.
2 Gotoh, O. (1982) An improved algorithm for
matching biological sequences. J. Mol. Biol., 162, 705-
708.
3 Benson, D.A., Karsch-Mizrachi,I, et al. (2000)
Genbank. Nucleic Acids Res., 28, 15-18.
4 Pearson, W.R., Lipman, D.J. (1988) Improved tools
for biological sequence comparison. PNAS, 86, 2444-
2448.
5 Altschul, S.F., Gish, W. et al. (1990) Basic local
alignment search tool. J. Mol. Biol., 215, 403-410.
6 Trelles, O. et al. (1998) Computational space
reduction and parallelization of a new clustering

Frank Lau
MB&B 452 4

approach to large groups of sequences. Bioinformatics,
14, 439-451.
7 Rognes, T. and Seeberg, E. (2000) Six-fold speed-up
of Smith-Waterman sequence database searches using
parallel processing on common microprocessors.
Bioinformatics, 16, 699-706.
8 Pearson, W.R. (1991) Searching protein sequence
libraries: comparison of the sensitivity and selectivity
of the Smith-Waterman and FASTA algorithms.
Genomics, 11, 635-650.
9 Sander, C. and Schneider, R. (1991) Database of
homology derived protein structures and the structural
meaning of sequence alignment. Proteins, 9, 56-68.
10 Hughey, R. (1996) Parallel hardware for sequence
comparison and alignment. Comput. Applic. Biosci.,
12, 473-479.
11 Wozniak, A. (1997) Using video-oriented
instructions to speed up sequence comparison. Comput.
Appl. Biosci., 13, 145-150.
12 Green, P. (1993) SWAT.
http://www.genome.washington.edu/uwgc/analysistools
/swat.htm

