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Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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microarrays

o Affymetrix
o Oligos
— Don’t have to know sequence

e Glass slides
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Dissecting the Regulatory Circuitry
of a Eukaryotic Genome
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Gene Expression Information and

Basics
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2y, Common Parts: the Transcriptorn
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Composition of Transcriptome In terms of
Functional Classes
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Composition of Genome vs. Transcriptom

Transcriptome Enrichment
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Expression Level is Related to Localization

Absolute expression
(copies/cell)

Expression ratio
fluctuations in
cell cycle
and

diauxic shift
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Distributions of
Expression Levels
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Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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~06000 yeast genes

with expression levels

but only ~2000 with localization....

I-.!-lutliln: - :I. & '.I, .
insight
T " Functional

genormics -

insight review articles

Genomics, gene expression and
DNA arrays

David J. Lockhart & Elizabeth A. Winzeler

Genomics Institute of the Wovartis Reseavch Foundation, 3115 Mevryfield Row, San Diggo, California 92121, USA

Experimental genomics in combination with the growing body of sequence information promise to
revolutionize the way cells and cellular processes are studied. Information on genomic sequence can be used
experimentally with high-density DNA arrays that allow complex mixtures of RNA and DNA to be interrogated
in a parallel and quantitative fashion. DNA arrays can be used for many different purposes, most prominently
fo measure levels of gene expression (messenger RNA abundance) for tens of thousands of genes
simultaneously. Measurements of gene expression and other applications of arrays embody much of what is
implied by the term {genomics); they are broad in scope, large in scale, and take advantage of all available
sequence information for experimental design and data interpretation in pursuit of biological understanding.
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Arrange data in a tabulated form, each row
representing an example and each

column representing a feature, including
the dependent experimental quantity to b

predicted.
predictorl | Predictor2 | predictor3 | predictor4d |response
Gl |A(1,1) A(1,2) A(1,3) A(1,4) Class A
G2 |A(2,1) A(2,2) A(2,3) A(2,4) Class A
G3 |A(3,1) A(3,2) A(3,3) A(3,4) Class B

(adapted from Y Kluger)
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Typical Predictors and Response for Yeast

Basics Response
How many Abs.
. times does the| expr.
I sequence Level
c
@ have these (mMRNA |prot.
o | Amino Acid motif copies/ |Abun-[ Cell cycle
() ang q Q
»n | Composition features? cell) |dance| timecourse Function
Gene-
D Chip
o = expt. (1000
C D o . -
g = < % from |sage |copie function
Yeast o c o |l =4 A|RY [tag |s ID(s) (from function
GeneD| & S =2 2|25 |E |Lab [freq. |/cell) JIl MIPS) description
YALOO1C |MNI FEMLRI 11160] . of 1f{ 0 1 0{ O 0.3 0[? 04.01.01;04.03| TFIIIC (transcription initigN
YALOO2W |KVFGRCELA{ 1176 . ofofoO 0/l 0] 1 0.2]? ? 06.04;08.13  |vacuolar sorting protein, |C
YALOO3W [KMLQFNLRW 206/ . ofofoO 0/l 0] 0] 191 19 05.04;30.03 |translation elongation faqN
YALOO4W |RPDFCLEPP] 215|. ofolo 0| o] 0]? 0[? 01.01.01 0[N
YALOO5C |VI NTFDGVAI 641]. ol Of O 0l 0] 1] 134 16 06.01,06.04;08| heat shock protein of H4??2??
YALOO7C |KKAVI NGEQY 190|. 0] 0] O 0| 1| 4 2.2 8(? 99|??7?? 7?7?77
YALOOSW [HPETLVKVKI 198). ofolo ol o 3 1.2]? ? 99?7777 ?2?27??
YALOO9W [PTLEWFLSH{ 259). of 2| 0 ol o 3 0.6]? ? 03.10;03.13 | meiotic protein ?2?27??
YALO10C [MEQRI TLKD] 493]. 0l 0] O 0] 0] 1 0.3]? ? 30.16]involved in mitochondrial ????
YALO11W |KSFPEWXK]| 616|. 0l 8/ 0 1] 0] O 0.4]? ? 30.16;99 protein of unknown func] ????
YALO12W |[GVQVETI SP{ 393|. ol of O 0l 0] 1 8.9 4 01.01.01;30.03| cystathionine gamma-lygC
YALO13W |[RTDCYGNVNE 362 . 0] 0] O 0l 0] O 0.6? ? 01.06.10;30.03| regulator of phospholipid|N
YALO14C |GDVEKGKKI | 202]. of o] 0 ol 0| 0 1.1]? ? 99?7777 N
YALO15C |MIPAVTTYKI 399|. . .01]. of 1f{ 0 0l 0 O 0.7 0 11.01;11.04 [DNA repair protein N
YALO16W [KKPLTQEQL] 635]. o8|l .o1] 04| o] o] olfll of of 2] 3.3 5|2 20([lllll 26| 16[03.01;03.04;03|sertthr protein phosphatd??2?
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Represent predictors in abstract high

dimensional space
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Find a Division to Separate Tagged Points
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Extrapolate to Untagged Points
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Discriminant to Position Plane
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Fisher discriminant analysis

o Use the training set to reveal the structure of class distribution
by seeking a linear combination

* V=W X WX, + ... + W X which maximizes the ratio of the
separation of the class means to the sum of each class
variance (within class variance). This linear combination is
called the first linear discriminant or first canonical variate.
Classification of a future case is then determined by choosing
the nearest class in the space of the first linear discriminant ar
significant subsequent discriminants, which maximally separat
the class means and are constrained to be uncorrelated with
previous ones.

Py —
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Fischer’s Discriminant

X X

(Adapted from ??7?)
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Fisher cont.

m=wxn 5

Solution of 1%t
variate

n, 1999, Yale, bioinfo.mbb.yale.edu
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Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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Bayesian
System for

Localizing
Proteins

'IIER_I_"

Represent localization of each
protein by the state vector P(loc)
and each feature by the feature
vector P(feature|loc). Use Bayes
rule to update.

Feature Vects

=

State Vects

P(featurelloc) Prm(loc)

s Initial Prior
P(NLS=true | loc) K

Nuc Pm(nuc)

ER :
Cyt Y =
v Posterior

—1 >

T P..(loc | NLS=true)

p(NLS=true | nuc) \

Pm(nuc | NLS=true)
= p(NLS=true | nuc) . ppinuc) | Z

18 Features: Expression Level
(absolute and fluctuations), signal
seq., KDEL, NLS, Essential?, aa
composition
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Bayesian

System for

Localizing
Proteins

'IIER_I_"

Represent localization of each
protein by the state vector P(loc)
and each feature by the feature
vector P(feature|loc). Use Bayes
rule to update.

Feature Vects

| State Vects
P(featurel|loc)

>
Pn(loc)

Initial Prior
P(NLS=true | loc) - R

10 Nuc Pm{nHC)
- ER .
: Cyt T "
. v Posterior
| I %

T P..(loc | NLS=true)

p(NLS=true | nuc) \

Pm(nuc | NLS=true)
= p(NLS=true | nuc) . ppinuc) | Z

_’

P(mRNA expr=high | loc)

2 N
E B M

i >

° . Pm(loc | mMRNA expr = high)
+ O
P(pl > 9| loc)

ﬁ I \ Final Result
L] v

_’
@Pm(loc | pl > 9)
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P(c|F) = P(F|c) P(c) / P(F)

P(c|F): Probability that protein is

In class c given it has feature F Bayes
P(F|c): Probability in training data Rule
that a protein has feature F if it is

class c

P(c): Prior probability that that protein is in class ¢

P(F): Normalization factor set so that sum over all classes
cand~cis1l—i.e. P(c|F) + P(~c|F) =1

This formula can be iterated with )
P(c) [at iter. i+1] <= P(c|F) [at iter. ] Cue =8rgMax P(c,)O P(x I¢))

C,1{C,,C;} i=1
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Yeast Tables for Localization Prediction

rsponse BAYyeSian Localization
. c
< How many times | Abs. expr. G
()] n =
= does the Level 25
Qo sequence have (MRNA T 5
g’ Amino Acid these motif copies / Cell cycle State Vector giving o9
» | Composition features? cell) timecourse localization prediction O
Gene-
) Chip 5
= = expt. =
0 e e - g
< =1 [ = from [sage S
Yeast o clne ‘?_,'g,‘;', RY [|tag | 0 |9 S
Gene IDJj Sz BlIE 5 [E |Lab |freq. |(IL D b
YAL001C [N 1160]. ol 1f olflll 1] o[ o] 0.3 0 4
YALO02W/|K 1176]. ol o oflll of o] 1[ 0.2]2 4
YALOO3W/|K 206]. ol of offlll o] of o] 19.1] 19|] 7 o8| 126
YAL004AW[H 215]. ol o] oflllll of o] of2 ol] s 4
YALO05C [\ 641]. ol of ofllll of of 1] 13.4] 16]] = 8
YAL007C [H 190]. ol of oflll of 1] 4] 22 8l] 15 16
YALOOSW/|H 198]. ol o|l ofll o] of 3] 1.2[2 9 2
YALOOOW/|H 259]. ol 2[ offllll o] o] 3] 0.2 6 3
YALO10C [N 493]. ol of offllll of o] 1] 0.3]2 1 6
YALO11W[H 616]. ol 8] offllll 1] o] o] 0.4]2 6 5
vAL012W[d 393]. ol of offlll of of 1] 8.9 4] 2 23 C
YALO13W[H 362]. o o| ofll o] o] of o0.6[? 7 6 N
YALO14C [q 202]. ol of offll o] o] of 1.1]? 12 9 1%| 96%| 4%| 0%| 0%|N
YALO15C [N 399]. ol 1f olflll o] o[ o] 0.7 o] 1 12 2%| 96%| 0%| 0%| o0%|N
YALO16W|H 635]. ol of olflll of of 1] 3.3 51 15 16 74%| 26%| 0% 0% 0w C
YAL017W|\ 1356/ o of offllll o o] o] 042 14 4 0%| 1% 99%] 0% ow M
YALO18C [H 325]. ol of olllll of o] 4[2 ? 4 2 0%| 1000 0%| 0% ow N
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th 100 -
o 88
o) a0 -
ReSUItS on € 0 7 82 74 75
- T 91 63
Testing Data 8w o
- 50 -

i 39
O 40
E 20 . a2
| -
O 20

Localization Annotated as Predicted O 10 -
X 0 . . .

C N M T E TOTAL
Compartments

o Individual proteins: 75%
1935 with cross-validation

YPD
2143

Carefully clean training dataset to avoid circular logic
Testing, training data, Priors: ~2000 proteins from

Swiss-Prot Master List

Swiss-Prot High Quality ~ Also, YPD, MIPS, Snyder Lab
704
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E [1342]
Results on

Testing Data #2

Compartment
Populations. Like QM, VB 169 163
directly sum state vectors
to get population. Gives
96% pop. similarity.

Overall —»
Compartment N in: compart. pop. vector N
Population Vector State vectors of prc out: localized-1342 expected

- -+ » - = +

T
T,

=

Normal "sum"
of protein
localizations

Thresholding
state vectors

x_,f‘

i oY
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Extrapolation to Compartment

Populations of Whole Yeast Genome.:

~4000 predicted + ~2000 known

7% [6042]
21%
=

aplasmic

29%

ear
34%

9%

32 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu




Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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Typical Predictors and Response for Yeast

Basics Response
How many Abs.
. times does the| expr.
I sequence Level
c
@ have these (mMRNA |prot.
o | Amino Acid motif copies/ |Abun-[ Cell cycle
() ang q Q
»n | Composition features? cell) |dance| timecourse Function
Gene-
D Chip
o = expt. (1000
C D o . -
g = < % from |sage |copie function
Yeast o c o |l =4 A|RY [tag |s ID(s) (from function
GeneD| & S =2 2|25 |E |Lab [freq. |/cell) JIl MIPS) description
YALOO1C |MNI FEMLRI 11160] . of 1f{ 0 1 0{ O 0.3 0[? 04.01.01;04.03| TFIIIC (transcription initigN
YALOO2W |KVFGRCELA{ 1176 . ofofoO 0/l 0] 1 0.2]? ? 06.04;08.13  |vacuolar sorting protein, |C
YALOO3W [KMLQFNLRW 206/ . ofofoO 0/l 0] 0] 191 19 05.04;30.03 |translation elongation faqN
YALOO4W |RPDFCLEPP] 215|. ofolo 0| o] 0]? 0[? 01.01.01 0[N
YALOO5C |VI NTFDGVAI 641]. ol Of O 0l 0] 1] 134 16 06.01,06.04;08| heat shock protein of H4??2??
YALOO7C |KKAVI NGEQY 190|. 0] 0] O 0| 1| 4 2.2 8(? 99|??7?? 7?7?77
YALOOSW [HPETLVKVKI 198). ofolo ol o 3 1.2]? ? 99?7777 ?2?27??
YALOO9W [PTLEWFLSH{ 259). of 2| 0 ol o 3 0.6]? ? 03.10;03.13 | meiotic protein ?2?27??
YALO10C [MEQRI TLKD] 493]. 0l 0] O 0] 0] 1 0.3]? ? 30.16]involved in mitochondrial ????
YALO11W |KSFPEWXK]| 616|. 0l 8/ 0 1] 0] O 0.4]? ? 30.16;99 protein of unknown func] ????
YALO12W |[GVQVETI SP{ 393|. ol of O 0l 0] 1 8.9 4 01.01.01;30.03| cystathionine gamma-lygC
YALO13W |[RTDCYGNVNE 362 . 0] 0] O 0l 0] O 0.6? ? 01.06.10;30.03| regulator of phospholipid|N
YALO14C |GDVEKGKKI | 202]. of o] 0 ol 0| 0 1.1]? ? 99?7777 N
YALO15C |MIPAVTTYKI 399|. . .01]. of 1f{ 0 0l 0 O 0.7 0 11.01;11.04 [DNA repair protein N
YALO16W [KKPLTQEQL] 635]. o8|l .o1] 04| o] o] olfll of of 2] 3.3 5|2 20([lllll 26| 16[03.01;03.04;03|sertthr protein phosphatd??2?
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Represent predictors in abstract high

dimensional space
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Use clusters to predict Response
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HRI

K-means

- Heuristicrats Research, Inc.

K-means algorithm in 2-D clustering

Step 1
{assign points o centers)

Initialize
®
X
b % @
e X
¥ X
®
Step 2
(recompute centers)
x
®
b bd
e X
. x
X

© Copyright 1995
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K-means

Top-down vs. Bottom up
Top-down when you know how many subdivisions

k-means as an example of top-down

1) Pick ten (i.e. k?) random points as putative cluster centers.

2) Group the points to be clustered by the center to which they are
closest.

3) Then take the mean of each group and repeat, with the means now at
the cluster center.

4) | suppose you stop when the centers stop moving.
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Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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Expression
profiles &
distance matrix

SOM, k-means Hierarchical ~ SVM

Ty o' 7 L
&
il (supervised learning)
e Clustering of expression profiles
e Grouping functionally related genes together (?) ( ..

» Botstein (Eisen), Lander, Haussler, and
Church groups, Eisenberg

[

... Protein Function?

— ET_TT Do Expression
\_/é; ~ Clusters Relate to

Can they predict

£
\
O Function .

) functions?

/
O
Relate to
=)

Internal |:> Siernal
analysis -
i information

=~
=
=
—
i

T

l




Information for Function

Prediction

seq. length

Yeast
Gene ID

YALOO1C

YALOO2W

YALOO3W

YALOO4W

YALOOSC

YALOO7C

YALOO8W

YALOOSW

YALO10C

YALO11W

YALO12W

YALO13W

YALO014C

YALO15C

YALO16W

YALO17W

YALO18C

YALO19W

YALO20C

YALO21C

Amino
Acid
Comp
osition

Response

o| Abs. expr.
w Level
n (mRNA |Prot.
a| copies/ |[Abun-
n cell) dance Cell cycle timecourse Function
Gene-
Chip
expt.
from |sage [(1000 function
tag |copies| o [ 4la]m|<|wlol~lolo S [N |2 |UEORUCHIETE1)
freq. |/cell) |[LjW (L0 (00 (0Ll un{n]nfl i description
| 0|? 5 4 4 s| 4 3 s| s| 3 5 71 9 4]|04.01.01;04.03.0{ TFIIC (transcript
| ? ? 8 2l 3| 4 31 4 s s| 3 4 4] 6 4]//06.04;08.13 vacuolar sorting H
| 19 23| 7ol 73] 91] 69| 105| 52| 112| 88| 64| 159 106| 104 75| 103||05.04;30.03 translation elong
. 0]? 18] 12 9of 5 5| 3] e 4 4 3 3 5 5 4/01.01.01 0
| 16 17| 39| 38| 30 13| 17| 8| 111 8 7| 8 6 8 8 7/[06.01,06.04;08.0/heat shock prote|
| 8]? 15| 20| 32| 20| 21| 19| 29| 19[ 16| 22[ 20[ 26| 23] 22 99“
| ? ? 9 71 11 3] 2 2l 2| 3 3 4 4 3 99
| ? ? 6 4 3 5 3 s| 5| 3 4 6] 6 4//03.10;03.13 meiotic protein
| ? ? 1 4 s e 4 ol 7| 4 s e 7 5 30.16/involved in mitoc
| ? ? 6 4 4 8| s 8l 6 6 5 6 6 7//30.16;99 protein of unkno
| 4 6.7| 29| 26| 25 27| 53| 26| 43] 36| 25| 28] 23] 28] 31 29[[01.01.01;30.03 |cystathionine gar]
| ? ? 71 9| 6 5| 14| 6] 12| 14 10f 9 9 9f 10[ 9[[01.06.10;30.03 |regulator of phos
| ? ? 12| 13[ 10| 8 10| 10f 12 13| 12| 14 11] 11| 11| 10 99 Mg
| 0 1| 19| 18| 14| 10| 14| 12| 17| 17| 14| 13| 11| 13] 16| 11{[11.01;11.04 DNA repair prote
| 5|7 15| 20| 20| 102] 20| 20| 30| 22| 18] 19| 18 20| 21| 21|/03.01;03.04;03.2|ser/thr protein ph
| ? ? 14 3 4 8 5 6/l 51 5 8 9] 10 6 99
| : ? ? 4 2l 2 1] 1 2l 21 af 2 1] 2 2 99
| 1|? 14| 12| 14| 10[ 14| 10| 15| 14| 11| 8 10 11 11| 7|[11.04;30.10 similarity to helic
| 1|? 6f 3 4 3 3] 2 3 3 2f 2/ 2 3 3 3 30.04|alpha-tubulin sup||
| 0[? 16[ 14| 16| 14| 17| 12| 20] 16| 17| 12| 15| 18| 19[ 13[[{01.01.04;01.05.0)transcriptional re"
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Functional category number

Function

Average correlation

# ORFs

01

METABOLISM

0.1001

1005

01.01

amino-acid metabolism

0.1488

199

01.01.01

amino-acid biosynthesis

0.239

114

01.01.04

regulation of amino-acid metabolism

0.23

32

MIPS YFC: 66 bottom classes, 10 top classes

Average correlation of uncharacterized genes is 0.16
Similar to Botstein analysis.

e

YAROT]
1‘:|’Iil".l.‘.r‘?i?l."‘
YEROEC

L]

-

L]

MIPS Functional
Category

g.g., "Phosphate
Metabolism"

P

Transcripton
Profile

e

s o
? = f

= |8 |8 EEm
S|z |2
Y AROTI 1 ol 03
YRR o2 1. 0.y
YBROOIC | 0.3 04 1
L
= "..
™ *

Correlation Coefficient Matrix (Pearson Coefficient)

Average Correlation Coefficient

for Group of Genes

%

Correlate with

Expression Level

with Functional

Category

Functional category number |Function Average correlation |# ORFs
01 [METABOLISM 0.1001 1005
01.01 amino-acid metabolism 0.1488 199
01.01.01 amino-acid biosynthesis 0.239] 114
01.01.04 regulation of amino-acid metabolism 0.23 32|
01.01.07 amino-acid transport 0.1198 23]
01.01.10 amino-acid degradation 0.0524 3|
01.01.99 other amino-acid metabolism activities 0.2205 4
01.02 nitrogen and sulphur metabolism 0.1869 73
01.02.01 nitrogen and sulphur utilization 0.0726 37
01.02.04 regulation of nitrogen and sulphur utilization 0.3715] 28|
01.02.07 nitrogen and sulphur transport 0.282%' 8|
01.03 nucleotide metabolism 0.1708 134
01.03.01 purine-ribonucleotide metabolism 0.3639 42
01.03.04 pyrimidine-ribonucleotide metabolism 0.176] 28
01.03.07 deoxyribonucleotide metabolism 0.1095 12|
01.03.10 metabolism of cyclic and unusual nucleotides 0.2848) 8
01.03.13 regulation of nucleotide metabolism 0.2696
01.03.16 polynucleotide degradation 0.2461
01.03.19 nucleotide transport 0.1187

ide- 0.032
01.04 phosphate metabolism .
01.04.01 phosphate utilization
01.04.04 regulation of phosphate utilization
01.0407 phosphate transport
01.05 carbohydrate metabolism
01.05.01 carbohydrate utilization
01.05.04 requlation of carbohydrate utilization

.yale.edu
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Transcnipton

ORF Profile D|Str|bUt|OnS Of Gene

/_
MIPS Functional YAROT ... Tr’“v;

g Expression Correlations,

e.g., "Phosphate [rooc ] f I I . b I G
Metabolism" — T’_/\b Or A POSSI e ene
L | | | |
[ | L | .
[ | "
Groupings H
§ % % ERE N
:|%|3 4.5
\:.-'IHUFI 1| i 03 4':' m
YRROAIC | 03] 1. | 0.4
YBROOIC | 0.3 0M] 1 35 \
[ . =2
- *e 33.0 —G=3
=
. —G=10
Correlation Coefficient Matrix (Pearson Coefficient) g~
Q
3 20
. . £ 1.5
Average Correlation Coefficient s
for Group of Genes 10 Vd
Sample for Diauxic shift Expt. (Brown), 05
EX. Ryyg6-3 = \
[ R(gene-1,gene-3) + R(gene-1,gene-4) 0.0 ' ' '
+ 10 -08 06 -04 -02 00 02 04 06 08 10

R(gene-5.gene-7)1/3 Average correlation coefficient R,,,



Transcnipton
ORF Profile
’i_ - —
MIPS Functional AR .. Tf’“*ﬂ

Distributions of Gene

R P e N Expression Correlations,

¢.g., "Phosphate [t .
Metabolism" o T’_:h‘* for AII POSSI ble Gene
L | |
[ ] L | n
* Groupings 2 D
s ?;, e B ,
Jilk **T7 P-value for 'f\
YAROTI | 1. | 0] 0.3 . pn
yRROOXC | 03] 1. | 04 L SpeCIfIC 10'
YBROPAC | 0.3 oM 1
: _;-5'— gene func. =
i =
; " g0 group —G=3
a 25 — =10
Correlation Coefficient Matrix (Pearson Coefficient) =
g, 2.0
Average Correlation Coefficient Sk 4
for Group of Genes 10 Vd
Sample for Diauxic shift Expt. (Brown), 05 / § = I -
Ex. Ravg’st — / I j .1!..3-_\
[ R(gene-1,gene-3) + R(gene-1,gene-4) 0.0 '_‘

+
R(gene-5,gene-7) ]/ 3

-0 08 06 -04 -02 00 02 04 06 08 10
Average correlation coefficient R,



Experiment

Cell Cycle
({CDC28)

Cell cycle
(CDC15)
Diauxic

shift

Spo-
rulation

Cell growth, di-
vision & DNA syn.

Protein synthesis

Transcription

Cellular organization

Cell rescue, defense,

Experiment

fatty acids

2 2F o c
(AN S o = as
38 38 3° 93
de 4= 8% F
Respiration - 1.4
TCA pathway - 06
Glycogen, trehalose )
metabolism - 0.7
E‘ Glycolysis - 21
=]
‘-:_.': Gluconeogenesis 37
m
:} Glyoxylate cycle 99
E Pentose-phosphate
= pathway 0.8 0 0.6
Fermentation - 0 23
Other energy
generation activities o7 0.1 0.1 0.2
Beta-oxidation of 05 04 0.4 o

Based on Distributions,

Correlation:

Always

§ignificant

Sometimes

Never
Significar

Correlation of

Established Functional

Categories, Computer

E. death - -
O | Intracellular )
g' transport _ . N
ﬁ lonic homeostasis _ i) 0.8
D Metabolism Bl
ransport facilitation 0 il
Signal transduction 25 0.1 06
Unclassifield 2.3 ] 0
Cellular biogenesis a0 0.4 0.2
Protein destination 03 0.2 0.6
Retrotransposon &
plasmid o i iy
Fraction of significant groups Total #
| Diauxic iSporu-
cDC2s |CDC15 Shift lation | 9rouPs
MIPS 1 631% 81% 12% 13% 168
MIPS 2 50%| 63% 17% 13% 102]
IMIPS 3 23% 33% 5% 4% 73
nnrgy"
I:Em level) 40% 60% 20% 0% 10
SOM 93%|- |- |- 30
Clustering 60% 25

Clusterings

i6fnfo.mbigyale.ed

—

l
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Can we define FUNCTION well Fold, Localization,

enough to relate to expression?

Problems defining function:
Multi-functionality: 2 functions/protein (also 2 proteins/function)

Conflating of Roles: molecular action, cellular role, phenotypic
manifestation.

Non-systematic Terminology:

‘suppressor-of-white-apricot’ & ‘darkener-of-apricot’

GBNPIOLEC E. <ol genome ond

J (cross-org.,

just conserved,
NCBI
Koonin/Lipman)

Functional
Classification

ENZYME

(SwissProt
Bairoch/
Apweiler,

just enzymes,
Cross-org.)

.............

nnnnnn

| “Fly
=—1 (fly, Ashburner)
—{ now extended to

=) GO (cross-org.)

xxxxxxxxxx

(yeast, Mewes)

MIPS/pepanT |

Also:

Other
SwissProt
Annotation

WIT, KEGG
(just pathways)

TIGR EGAD

(human ESTSs)

l 24 (c) Mark Gerstein, 2000, Yale, bioinfo.mbb.yale.edu l

Interactions &

Regulation are
attributes of proteins that

are much more clearly
defined

L1 ER+'II'

47 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu




YPD + 8mM caffeine Ca.ff W h |
Cycloheximide h itivity: YPD + 0.08 ?g/ml S O G no
Sycloheximide at s0c o Cyc e e I I l e
White/ red color on YPD W/R
-
YPG Phenotype Profiles
Calcofl h itivity: YPD + 12 ?g/ml calcofl S
3gocco uor hypersensitivity + g/ml calcofluor at Cal c 3
YPD + 46 ?g/ml hygromycin at 30°C Hyg . . .
SDS Transposon insertions into (almost)
Benomy! hypersensitivity: YPD + 10 2g/ml benomyl BenS g each yeast gene to see how yeast IS
YPD + 5-b -4-chloro-3-indolyl ph h 37°C —_
* &bromo-4-ehloro-3indolphosphate BCIP = affected in 20 conditions. Generates a
YPD + 0.001% methylene blue at 30°C M B —_— -
| o phenotype pattern vector, which can
Benomyl resistance: YPD + 20 ?g/ml benomyl B en R S . . .
YPDY ®  be treated similarly to expression
YPD + 2 mM EGTA EGTA da‘ta
YPD + 0.008% MMS M MS YPD + 8mM caffeine Caff
YPD + 75 mM hydroxyurea H U ;domm‘de hypers YPD +0.08 2g/ml CyCS
YPD at 110C (COLD) YPDll White/ red color on YPD W/R
YPGlycerol YPG
ggolccofluor resistance: YPD + 66.7 ?g/ml calcofluor at Cal C R ;?;‘é“"”“’ Typersensitvity: YPD + 12 2g/ml calcofluor at CalCS
Cvoloheximid st "YPD + 0.3 20/ml R YPD + 46 2g/ml hygromycin at 30°C H
c)},cﬁooheex)i(méiee resistance ' o CyC YPD + 0.003% SDS Ség
Hyperhaploid invasive growth mutants H H IG B Benomyl ftivity: YPD + 10 2g/ml benomyl Bens
YPD + 0.9 M NaCl YPD + 5-bromo-4-chloro-3-indolyl phosphate 37°C BCIP
N aCI YPD +0.001% methylene blue at 30°C M B
< < -< < -< < Benomyl resistance: YPD + 20 2g/ml benomyl B enR
% IE % p % % || YPD at 37°C YPD37
= OO0 O o O YPD +2mM EGTA EGTA
o ORL N N
N © E (o] 8 [ YPD + 0.008% MNS MMS
M S d o o o (@) E YPD +75 mM hydroxyurea HU
ny e r YPD at 11°C  (COLD) YpD"
Ca:lcoﬂumr resistance: YPD + 66.7 ?g/ml calcofluor at Cal c R
gyy;lou::;\mrnlgee resistance: YPD + 0.3 ?g/ml Cch
Hyperhaploid invasive growth mutants H H IG
YPD +0.9 M NaCl NaCI

Affected
Affected . .
by Another et Clustering Conditions

Condition
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i Phenotype ORF Clustering

- N - E:; ;det) lx_f:w Go Commuricator Help - k_means

ol bs clustering
= = of ORFs

' based on
95 “phenotype

. X o patterns,”

8 © 4 cross-ref.

% N £ | to MIPs

|

|

|
_: Functional
= Classes
] M4 YPD® a5 CyeR i2is  WeGl  ehr  Galt  12hs | 20 Cond|t|ons IPS

VQEE_Z 11114112311113421121  9.45=-01 TIRO74W 99 UNCL
——— JE e e ___;]rl

| |

| Documer t: Done

Caff 1521 EGTA 2zi2z WS 2124 HHIG 1885 yPOM

Cluster showing cold
phenotype
(containing genes
mMOost necessary in
cold) is enriched in
metabolic functions

Metabolism

Ben® oElaz B 2042 BCIP 54065 Gy Jzh2  Ben® A3/oz

PG s4i08 Caks 149 WiR Q066 S0E 1940278 Hya 2078511
O METABOLISH EMERGY

5]
O e GROWTH, DIVISION AND DA SYNTHESIS O TranscRIPTION
B FROTEIN S¥NTHESIS O PROTEIN DESTINATION
O
]
O

Cold

B TRANSPORT FACILITATION INTRACELLULAR TRANSPORT
B CELLULAR BIOGENESIS SIGNAL TRANSDUCTION

O GELL RESGUE, DEFENSE, GELL DEATHAND AGEING O 10MT HOMEOSTASIS "III'FI D1 1 ES.'IES
B CELLULAR ORGANIZATION
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Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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The remainder of this packet Is
purely optional material giving an
overview of datamining methods

(some of this was adapted from Y Kluger)
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Overview of Machine learning methods

SUPERVISED

Fisher discriminant analysis
Statistical disc. analysis
Logistic discrimination
Nonlinear discrimination
Support vector machines
Decision trees

Neural networks

K nearest neighbors
Bayesian networks

UNSUPERVISED

K means

Hierarchical

Self Organizing Maps
Spectral methods

SVD, PCA, bi-clustering,
normalized cuts

Expectation Maximization
Bayesian Network
Multiscale analysis
Ising-like models
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Effect of Scaling

npa'a[eA qqurojulolg ‘BB A ‘666T ‘UIBISI9O NIl (9) €

(adapted from ref?)




Data preparation and cleansing

Feature manipulations: scaling, normalization,
standardization, or numeric €<->discrete

Strategy of handling missing values
Choosing relevant discriminating features:

expert, algorithms such as backward elimination and forward
selection and/or by principal component analysis

Removing outliers by visual inspection (could be too hard
when the number of features is large) or by selecting them if
several learning algorithms failed to classify them correctly
and finally by inspecting these cases manually.
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Get to know the parameters

of the various learning algorithms such as the k value in k-
nearest-neighbors, pruning parameters in decision trees, the
polynomial power and parameters related to minimization of
error on the training set in SVM classification etc.
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Choice of learning algorithms

e suitability to data size, data type (numeric, symbolic etc.) and

data quality (noisy, inaccurate, missing values, etc.)

* The choice of a learning scheme also involves computationa
considerations such as time memory and operational
simplicity

» degree of desired interpretability or output representation
(decision trees are easy to communicate as opposed to neur
networks.)

ale.edu
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Assess performance of the learning
algorithms on test sets

e cross validation, bootstrap, confusion matrix, various
loss and cost functions and ROC (receiver operating
characteristic) curves. Then, compare these
algorithms by applying for instance statistical
confidence bound tests on the algorithms’ error rate
distributions, or inspect the ROC curves obtained
from cross validated learning schemes evaluations

(adapted from Y Kluger)
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ROC Curve

* In our two-class classification task (soluble/insoluble), we can
sort the proteins of a test set in descending order according to

the probability that they are soluble as predicted by the learning
model.

 ROC curve is constructed by going along the ranked list one
step at a time and counting how many TP, FP, TN, and FN
were accumulated up to that step.

* By changing the parameter of location in the list sorted in
probability order, we can inspect at each point along the list th
TP rate (TP/(TP+FN)) as a function of the FP rate (FP/(FP+TN
up to that point. A worthy learning tool must yield a curve for

which the TP-rate>FP-rate as opposed to the curve TP-rate=FP-rate
generated by random (not-ranked) samples of different sizes taken from th
test set (Note that at the curve’s end points where none or all elements of
the sorted list are taken into account TP-rate = FP-rate).

58 (c) Mark cerBein, 1999,@e,cBioinfo.mbb.yale.edu
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The steeper the step-like (concave) curve near to the origin the better
because the larger the coverage with high TP rate and low FP rate.

A ROC curve based on one test set is jagged and in order to

get a smoother and more reliable curve, one performs an N-f

o

cross validation. This is done by averaging over the TP-rates

obtained from the N test datasets at each fixed point along the

FP-rate axis (x axis). These fixed points along the FP-rate are
determined by covering enough of the highest-ranked instance
In the test datasets. The preferable learning tool is selected by
taking the one with the lower FP rate at the desired coverage
level of TP.

Other measures used to evaluate false positives versus false
negative tradeoff along the ranked list are Lift charts in which
the TP are displayed against the subset size
(TP+FP/(TP+FP+TN+FN)) and recall-precision curves where
the TP rate (recall) is displayed against the precision
(TP/(TP+FP+TN+FN)).

\V

S

(adapted from Y Kluger)
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Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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Support Vector Machine (SVM)

« A sophisticated discriminant method that is capable of handling
nonlinear class boundaries by transforming the original feature

space to a new space, in which the non-linear class boundary is
a hyperplane, and the new features are non-linear
combinations of the original features.

 The number of features in the new space is larger than the
number of the original features. Support vector machines
overcome the shortcomings mentioned above: (toc
many parameters to fit) and (computational time for
linear discriminant analysis is cubic in number of features.)

* |f we assume that the classes of the dataset are linearly
separable in the new space, their corresponding convex hulls
(the tightest enclosing convex polygons connecting the data
points of each class) do not overlap.

bioinfo.mbb.yale.edu
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SVM cont.

* The discrimination task is then to find the maximum margin

hyperplane defined as the hyperplane that is maximally distant

from both convex hulls. This hyperplane also intersects the

shortest line connecting such convex hulls midway. We call the

cases that are closest to the maximum margin hyperplane

support vectors. The minimum number of support vectors from

each class is one, and they uniquely define the maximum
margin hyperplane. A standard constrained quadratic
optimization scheme is suitable for finding the support vectors
and the parameters that determine the maximum margin
hyperplane.

This is because such
hyperplane is determined by a small number of support vector
In a global fashion.

(adapted from Y Kluger)

.yale.edu
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A solution for the complexity problem

o separate hyperplane of the standard linear discriminant

analysis in terms of a weighted sum of an inner product of
support vectors, with the feature vector x representing the
example to be classified. This works because the standard
linear discriminant problem of finding the solution (w*,b*) tha

minimizes ||w|| subject to C‘r(m _|_b)3 1

can be written as L o)
w =ga,C, X
|

where all the auxiliary variables alpha vanish excluding the

samples that are the support vectors. Thus a new example x

can be classified by the linear decision function

(adapted from Y Kluger)

sign (8 a,C % X +b’)
|

r~4
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SVM4

e Substitution of the inner product in the sum by some power of
this product is directly mapped to a polynomial nonlinear class

boundary. Other functions of the inner product can be used
for more complicated class boundaries.

» This key operation of the dot product between the support
vectors and the test instances in the original lower
dimensional space can be carried out before the nonlinear
transformation to the new space. This allows using the
optimization algorithm for finding the separating hyperplane
the new higher dimensional space in the original lower
dimensional space. Therefore, the complexity is not as high
as the one that results in applying standard discriminant
analysis in the higher dimensional space, but is of the same
order of magnitude as the one in the original feature space.
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Local Metods

based learning approach. In this approach all the training
Instances are stored, and a distance function is used to
determine which instances of the training set is closest to an
unknown query instance. The distance between two instances
with n dimensional feature vectors x and y is usually defined a
the Euclidean distance between them.

The k=1 nearest neighbor algorithm assigns to a query instanc
with feature vector y the class of the instance whose feature
vector X IS nearest to y.

To Iincrease stability it is better to take a larger value of - by
assigning to the query instance the most common value amon
the k nearest training instances.

(adapted from Y Kluger)

« K nearest neighbors is a representative method of the instance-

\J * et
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K nearest neighbors

« Advantages: , capability to

by a collection of simpler local decision
surfaces in the vicinity of the query instance, and explicit

conservation ( ) of all training set information.
Disadvantages: strong used
and the fact that the and

therefore few of them can dominate others in determining a

distance between the query and training set instances. Anothe

difficulty is the fact that rath
than in advance.

(adapted from Y Kluger)
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Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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Decision Trees

can handle data that is not linearly separable.

A decision tree is an upside down tree in which each branch node represents a choice between a number of alternatives, and
each leaf node represents a classification or decision. One classifies instances by sorting them down the tree from the root t
some leaf nodes. To classify an instance the tree calls first for a test at the root node, testing the feature indicated on this node
and choosing the next node connected to the root branch where the outcome agrees with the value of the feature of that
instance. Thereafter a second test on another feature is made on the next node. This process is then repeated until a leaf o the
tree is reached.

Growing the tree, based on a training set, requires strategies for (a) splitting the nodes and (b) pruning the tree. Maximizing h(%
decrease in average impurity is a common criterion for splitting. In a problem with noisy data (where distribution of observations~
from the classes overlap) growing the tree will usually over-fit the training set. The strategy in most of the cost-complexity
pruning algorithms is to choose the smallest tree whose error rate performance is close to the minimal error rate of the over-fi
larger tree. More specifically, growing the trees is based on splitting the node that maximizes the reduction in deviance (or a yo
other impurity-measure of the distribution at a node) over all allowed binary splits of all terminal nodes. Splits are not chosen| —
based on misclassification rate .A binary split for a continuous feature variable v is of the form v<threshold versus v>threshold ©
and for a “descriptive” factor it divides the factor’s levels into two classes. Decision tree-models have been successfully appli
in a broad range of domains. Their popularity arises from the following: Decision trees are easy to interpret and use when the
predictors are a mix of numeric and nonnumeric (factor) variables. They are invariant to scaling or re-expression of numeric

variables. Compared with linear and additive models they are effective in treating missing values and capturing non-additive

behavior. They can also be used to predict nonnumeric dependent variables with more than two levels. In addition, decision-
models are useful to devise prediction rules, screen the variables and summarize the multivariate data set in a comprehensiv
fashion. We also note that ANN and decision tree learning often have comparable prediction accuracy [Mitchell p. 85] and S\
algorithms are slower compared with decision tree. These facts suggest that the decision tree method should be one of our t
candidates to “data-mine” proteomics datasets. C4.5 and CART are among the most popular decision tree algorithms.
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proteins from eukaryotic model organisms. In this

sqc network [

* Intaresting hypotheses suggested by “protein-
relationship” maps

and NI

A pilot project in structural genomics focused on small

sSmoe M projec targets will be prioritized dynamically based on:

+ Relevance based on functional genomics results

fulfill the following sequence
of four rules are likely to be
insoluble: (1) have a
hydrophobic stretch -- a long

region (>20 residues) with
average hydrophobicity less
than -0.85 kcal/mole (on the
GES scale); (2) GIn
composition <4%; (3)
Asp+Glu composition <17%;
and (4) aromatic composition
>7.5%. Conversely, proteins
that do not have a
hydrophobic stretch and have

= less than 27% of their
residues in "low-complexity"
regions are very likely to be
soluble.
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Trees

» devise prediction rules, screen the variables and summarize the multivariate

dataset.

nodes --ellipses (interior nodes) and rectangles (leaves) labeled by the more
probable class (decision). Under each node-misclassification error
proportion.

Growing the tree requires (a) splitting the nodes and

(b) pruning the tree. Maximizing the decrease ir
average impurity is a common criterion for splitting.

noisy data- growing the tree will usually over-fit the training set.

Most of the cost-complexity pruning algorithms--choose the smallest tree

whose error rate performance is close to the minimal error rate of the over-f

larger tree.

(adapted from Y Kluger)

—
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Trees cont.

 Control parameters:

a) the threshold for splitting the node

b) minimal node size (default of 10) that can be further split
c) daughter node size must exceed a minimum (default of 5)
for asplit to be allowed

*Growing the trees is based on splitting the node that
maximizes the reduction in deviance over all allowed binary
splits of al terminal nodes. Splits are not chosen based on
misclassification rate .A binary split for a continuous
variable v is of the form v<threshold versus v>threshold
and for a“descriptive” factor it divides the factor’s levels
Into two classes.

‘Merge/split tree

74 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu




Advantages of tree-models

easy to interpret and use when the predictors are amix of
numeric and nonnumeric (factor) variables

e Invariant to scaling or re-expression of numeric variables.

«Compared with linear and additive models they are better in
treating missing values and capturing non-additive behavior.

*They can also be used to predict nonnumeric dependent
variables with more than two levels.

*ANN and decision tree learning often have comparable
prediction accuracy and SVM algorithms are slower compare
with decision tree.
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Large-scale Datamining

* Relating Gene Expression to Protein Features and
Parts

e Supervised Learning: Discriminants

« Simple Bayesian Approach for Localization Prediction
e Unsupervised Learning: k-means

o Correlation of Expression Data with Function

* Overview of Issues in Datamining

e Overview of Methods of Supervised Learning

e Focus on Decision Trees

« Overview of Methods of Unsupervised Learning

e Cluster Trees, Evolutionary Trees
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Unsupervised Learners
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PCA

.1[:|

1

principal components capture most of the variation of
the data (95.2% ). Each shape(color) belongs to a
different ideal pattern.

(adapted from Y Kluger)
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Quickie Trees and
Clustering

Other

Top-down vs. Bottom up
Top-down when you know how many subdivisions

k-means as an example of top-down

1) Pick ten (i.e. k?) random points as putative cluster centers.

2) Group the points to be clustered by the center to which they are
closest.

3) Then take the mean of each group and repeat, with the means now at
the cluster center.

4) | suppose you stop when the centers stop moving.
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Methods of Building Trees from the

bottom up

CHOOSE METHOD- Distance Based

File: infile
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Distance Methods
Compute distance measures
Build the tree from the table of distances

Assumptions

A single coefficient of sequence similarity contains the
information necessary to reconstruct the phylogeny
May reduce the available information

Measuring Distances
Compute all pairwise distances
Correct for multiple substitution events
Weight according to nucleotide substitution frequency
Weight according to codon degeneracy
Different measures presuppose different models of
character evolution

CHOOSE METHOD- Parsimony

a

" O 8 DB B ®E OO

i

P

Actual Phylogeny

Reconstructed Changes

Minimizing the number of changes at each node
Requires greater computer resources than distance
methods

Depends on phylogenetically informative sites
Retains all sequence information throughout the
analysis

roblems:

As the sequences diverge, the accuracy of the
inference drops

Long Edge Attraction

Multiple islands of “almost the most parsimonious trees”
can exist

Requires greater computer resources than distance
methods
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Bootstrap

to Test
the Tree

ANALYZE TREE- Bootstrap

[ T Y - P T S Y e

AACTG
ABCDE ALCTG ALCTG
LACTG ALCTG
ARt ACGTG were |[Taers
ACGTG ACCTG 10676 || xicTo
AACTG ACCTG | | BACTG||ACCTG || aacTe
ARCTG ACETG | [ALCTG LACTG
ACCTG e ACCTG
Mot ACCTG
ACCTG ACCTG
ACCTG

Randomly resample the data with replacement,
creating a new dataset that is then used to infer a
phylogeny

Generating replicate samples

Observe tree topology

Percentage of grouping

Majority Rule Consensus
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Popular Tree Program Systems

PREPARE THE DATA- PAUP

Phylogenetic Analysis Using Parsimony
David Swofford, Smithsonian
Sophisticated parsimony program with a wide variety of options

o Treebuilding algorithms
o Weighting schemes

o Resampling procedures
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PREPARE THE DATA.- Phylip

J. Felsenstein, University of Washington
A comprehensive set of phylogenetic inference programs

o Maximum Likelihood
o Parsimony
o Distance

o Singleand multipletree algorithms
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Settings for thiz run:
Search for best tree? Yes
Power? 200000
Megative branch lengths allowed? Mo
Lower—triangular data matrix? Mo
Upper-triangular data matrix? Mo
Subreplicates? Mo
Randomize input order of species? Mo, Use input order
Analyze multiple data sets? Mo
Terminal type (IBM PC, WTGZ, AWSIX? ANSI
Print out the data at start of run Mo
Print indicationz of progress of run Yes
Print out tree Yes
Write out trees onto tree file? ‘Yes
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