
Some Mathematics for Bioinformatics

Biological systems are, as a rule, large and complicated.  This makes it unlikely

that deterministic equations which describe these systems in detail will prove useful,

because the complexity of these systems will be reflected in a similar complexity in the

equations that describe them.  Furthermore, since obtaining experimental measurements

of the values of the many variables that would appear in such equations is difficult or

impossible, we need to simplify our description somewhat if we intend to apply

quantitative methods to biological systems.  One way that we can accomplish this is by

moving from an explicit to an implicit treatment of a great many of the variables that

complicate these expressions. In doing so, we choose to model the collective influence of

these “ignored variables” on the system by resorting to a probabilistic treatment of these

systems.  This turns out to be an important and useful simplification, and therefore a brief

discussion of probability theory may prove useful to your future work in biology. In

addition, it will provide a nice starting point for our later discussion of statistics.

We are used to thinking about probabilities as being a generalization of the notion

of the frequency of occurrence of an event, where the probability that the event under

consideration occurs is defined as the ratio of the number of favorable outcomes of an

experiment to the total number of trials in the limit of an infinite number of trials.

                  (1)                                    P A[ ] = lim
N → ∞

NA

Ntotal

It turns out that this definition is unacceptable from a mathematical point of view, but it

provides a fine guide to your intuition, and therefore you should not abandon it entirely.

Additionally, if this definition is modified slightly, it proves to be very useful in the

computation of probabilities of certain types of events (when there are only a finite

number of equiprobable outcomes in the experiment), as we will discuss shortly.

Rather than the above definition, which is mathematically unacceptable because it

relies explicitly on empirical observation, we will begin our discussion of probabilities

using some notions from set theory.  Though it sounds intimidating, set theory is nothing

but a more formal version of logic, and you have already used notions from it

innumerable times.  Just to complicate things somewhat in the beginning, a set,

technically speaking, can not be defined because any definition of a set must make use of

the notion of a set and is therefore circular.  However, technicalities aside,  you can think

of a set as a collection of objects, which are called elements.1  As an example, the set of
                                                
1 You also should be aware that a set may consist of just a single element.  Such a set is called a singleton.
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all people in Prof. Gerstein’s Bioinformatics class is equivalent to the set composed of a

list of your names.  In addition to being an example of a set, the above also provides a

nice illustration of an important notion from set theory, which says that a set may be

specified by either providing a condition that all elements of the set satisfy or by

enumerating every element of the set.  For example, the set of all integers greater than 2

and less than 10 may be written as follows
           (2)                S = x 2 < x < 10 and x ∈N{ }= 3,4,5,6,7,8,9{ }
where the bar should be read “such that” and the  “fork” indicates that the quantity to the

left are the elements of the set to the right.  In addition, the set N is the set of all natural

numbers (positive integers).  Therefore, the above may be translated “the set S is equal to

the elements x such that every element is greater than two and less than 10 and every

element is an integer”.  A bit formal, but necessarily so-set theory is the distillation of

logic and is therefore quite formal.  In addition, there are two sets that are so important

that they deserve special mention.  They are the universal set Ω, which is the set that

contains every element under consideration and the null set ∅, which contains no

elements (and consequently is sometimes called the empty set).

Having defined sets, we can perform some basic operations with them.  Given two

sets A and B, we define three operations called intersection, union and complement.

Introducing some more notation,

Definition of the Intersection of Sets

Given the sets A and B, we represent the intersection of the sets A and B as
A ∩ B ≡ x x ∈ Aand x ∈B{ }

Definition of the Union of Sets

Given two sets A and B, we represent the union of the sets A and B as
A ∪ B ≡ x x ∈ Aor x ∈B{ }

Definition of the Complement of a  Sets

Given a set A and the universal set Ω, we represent the complement of A as
                                                 Ac ≡ x x ∉ A and x ∈ Ω{ }

                                                                                                                                                
Extrapolating from this, the elements of a set are therefore also sets (with at least one element, but possibly
more).  Although such set theoretic musing is crucial for the formal development of modern probability
theory, it is not as relevant to your work here.
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A few words are in order about the above.  The intersection of two sets produces a third

set whose elements are only those elements that are common to both sets A and B.  This

is most easily understood using a Venn diagram, as shown below

Next, the union of two sets produces a third set whose elements are those that were

contained in either set A or set B, or both, as below.

Lastly, the complement of a set A is the set whose elements are contained in the universal

set Ω but not the set A, as below.

Having been introduced to the basic set operations, you should note that we can

combine these operations and extend them to encompass a number of different sets

(rather than just two).  Therefore, we can define the intersection and complement of an

arbitrarily large number of sets (even an infinite number of sets, though we will not

discuss this case), and we can also combine these operations in a variety of ways.  Some

possibilities are illustrated below using Venn diagrams.

Finally, before moving on to probability theory proper, you should also note that we can

use the above listed operations to provide a rigorous definition of a subset, which you
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already know is just a set whose every element is also an element of another set.  In terms

of our new set theory notation,

Definition of a Subset

The set A is a subset of the set B if every element of A is also an element of B

and is represented

A ⊆ B iff ∃ x x ∈ A ⇒ x ∈B{ }

The set A is called a proper subset of B if every element of A is also an element of B and

the two sets are not equal.  This is represented

A ⊂ B iff ∃ x x ∈ A ⇒ x ∈B and A ≠ B{ }

The set A and B are defined as equal if they are subsets of each other,
                                            A = B iff A ⊆ Band B ⊆ A

Where the iff is to be read “if and only if”, the backwards “E” should be read “there

exists” and the arrow should be read “implies that”.

So what does all this set theory have to do with calculating probabilities anyway?

The idea is that we can (tentatively) replace the aforementioned interpretation of

probability, which requires actually doing an experiment a large number of times and

counting up the number of times some outcome occurs, with a more sophisticated (and

less labor-intensive) method.  In this method, we count all of the outcomes that could

occur in the experiment (if there are a finite number of outcomes) and then count all of

the outcomes that are included in the event whose probability we are interested in

calculating.  Then, we can just divide the number of outcomes included in our “favorable

event” set by the total number of outcomes possible.  In other words,

            (3)                                           P[A]=
A{ }
Ω{ }

where {A} represents the number of sample points in the event set and {Ω}represents the

number of points in the universal set.

Before we apply this however, a few more words about jargon are in order.  It

turns out that, due to historical accident, probability theory has a somewhat different

terminology than does set theory.  For example, in probability theory the universal set is

called the sample space, and its elements are called sample points.  Therefore, the sample

points represent all of the possible outcomes of an experiment.  Additionally,  you should

make special note of the fact that only one of these outcomes can occur per trial.
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Therefore the sample points represent mutually exclusive outcomes.  Using the notation

of set theory, mutually exclusive sets are those sets which share no elements, i.e. A and B

are mutually exclusive iff A ∩ B = ∅ .  Such sets are called disjoint (their intersection is

the null set).  For example, in an experiment where we flip a coin once, the possible

outcomes are heads and tails (only one of which may occur per flip).  Therefore, the

sample space is given by the set in which each element is a mutually exclusive outcome

and every outcome of the experiment is represented by a sample point.  Occasionally, you

will find this last condition referred to as the exhaustive property of the sample space.

Now, back to our problem of calculating probabilities.  As a slight increase in

complexity from the last example, lets imagine an experiment where we flip two coins

once.  Then, the set of all possible outcomes (the sample space) is
                                                 Ω = HH, HT,TH,TT{ }
To illustrate the utility of the set theoretic approach to computing the probabilities of

events (when the state space is finite), consider the probability of the event that you get at

least one head in these two flips.  Therefore, the probability of this event is

                                                        P A[ ] =
A{ }
Ω{ }

where the notation is the same as in (3).

The subset representing the event we are interested in is
                                                    A = HH, HT,TH{ }
Notice that there are three points in the event set, and four in the sample space.

Therefore, assuming all sample points are equiprobable2 , the probability of getting at

least one head in two flips is  3/4=0.75.

While this method of computing probabilities is very useful, it has two major

limitations.  Namely, it is limited to experiments with a finite sample space and whose

sample points are all equiprobable. Unfortunately, it is frequently the case that we are

interested in calculating probabilities of events that can not be represented in sample

spaces satisfying both of these criteria.3  However, we can extend the definition of

probability much further by defining probability as a function which is defined on all

subsets of the sample space that obey certain rules.4   Although the details of this

                                                
2 This assumption of the equiprobability of sample points is the major precept of the so-called classical
definition of probability, which is the one we are now discussing.  As you will shortly see, this definition of
probability has been superseded by a more powerful and abstract definition.
3 Consider the case of flipping an unfair coin, e.g. probability of heads=3/4, probability of tails=1/4.
Clearly, even though the sample space is finite, the sample points are not equiprobable.
4 In particular, these subsets must contain, in aggregate, every sample point in the sample space and must be
closed with respect to finite union and complement.  This collection of subsets is sometimes called a
Boolean algebra.
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definition of probability are quite involved, we can boil much of it down to a final

definition of probability , as follows:

Definition and Axioms of Probability

Given a sample space in which each sample point has an associated probability

(measure), the probability of any event is the sum of the probabilities of the sample points

that are elements of the event set, or
P A[ ] = P x[ ]

x∈A
∑

Axiom I.
P A[ ] ≥ 0 ∀ A{ }

where the upside down “A” should be read “for all”

Axiom II.
P Ω[ ] = 1

Axiom III.

   
  
P Ai

i =1

∞

U
 
  

 
  = P Ai[ ]

i=1

∞

∑ ∀ Al ∩ Ak = ∅ if l ≠ k

These axioms are essential to the further discussion of probability and you should

therefore be very familiar with them.  Briefly,  Axiom I. says that probabilities are non-

negative.  This is rather intuitive, since an event may happen (positive probability), or

never happen (zero probability), but can not happen “less than never”.  Therefore,

probabilities are necessarily non-negative for the same reasons that distances, areas and

volumes are non-negative (you can never have less than no acres of land or less than no

liters of water, etc.).  This is not coincidental-probabilities are measures in the

mathematical sense, just the same as distances, areas or volumes.  Moving on, Axiom II.

states that the probability of the state space is unity.  All this means is that something

must happen in your experiment, and therefore some point in the sample space (which

contains all possible outcomes) must be realized.  Lastly, and perhaps most importantly

for the calculation of probabilities, Axiom III. says that the probability of a union of

disjoint (mutually exclusive) events is equal to the sum of the probabilities of the events.
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This property is sometimes called “countable additivity”, and is the starting point of all

calculations of probabilities using set theory.

In closing these brief introductory notes on probability theory, we consider the

notions of independence of events and conditional probabilities, which are essential to

our further discussion of statistics.  Intuitively, independent events are those events where

the occurrence of one event does not alter the probability of subsequent occurrence of the

other.  For a more rigorous definition, we define independence as requiring that

                                      
  
P Ai

i =1

n

I
 
  

 
  = P Ai[ ]

i=1

n

∏   for independent events Ai

where the capital pi is mathematical shorthand for the product.  You have probably

already been familiarized with this concept and computation rule, but it won’t hurt you to

see it again.  You should also verify that, in the event of equiprobable outcomes and a

finite state space, the result of multiplying probabilities of independent events is identical

to that obtained by the “ratio of sample points” method discussed earlier.

Having addressed independent events, we will now turn our attention to

computing the probabilities of events which are not independent.  For example, given that

I roll two dice and the sum of the two faces is 7, what is the probability that I rolled a 6

and a 1 (in that order)?  If I did not know the sum of the two faces, then the probability is

just (1/6)x(1/6)=1/36 (for two fair dice), by independence.  But I do know the sum, and

therefore the outcomes of the two die are not independent.  This is true because the sum

must equal 7, which constrains the admissible outcomes of the experiment.  However, we

can calculate this probability using a familiar method if we look at the problem somewhat

differently.  Since not all of the original sample space is relevant to this case (only those

outcomes which sum to 7 are), we could construct a new sample space, which is just a

subset of the old sample space.  This subset would consist of all outcomes of the two dice

which sum to 7 (there are six of them, which you should verify), and then every sample

point in our new space would be relevant.  Then, with this subset as our new sample

space, we see that  the outcome 6,1 represents 1 of the 6 possible outcomes, and therefore

the probability of getting this outcome given the foreknowledge of a sum equal to 7 is

1/6.

In more general terms, the probability of one event occurring, conditional on the

outcome of some other event, is called a conditional probability.  By way of notation, the
probability of A given B is represented P A B[ ].  Furthermore, we can visualize what a

conditional probability represents by using set theoretic ideas to generalize the method we

used above. The set representing the known outcome (B) represents the sample space.

The event that A occurs given that B occurs is equivalent to the intersection of sets A and
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B, i.e.       A ∩ B .  Therefore, for a finite sample space with equiprobable outcomes,
P A B[ ]=(the number of elements in A ∩ B /the number of elements in B).

However, this method, as used above to calculate a conditional probability suffers

from the same limitations that we encountered before with probabilities defined on finite

sample spaces and with equiprobable outcomes.  We can circumvent these problems in a

way exactly analogous to our previous solution; we will work with the probabilities of the

subsets explicitly, rather than limiting ourselves to just considering the ratio of numbers

of sample points in these sets.  Therefore,

A Rule for Calculating Conditional Probabilities
For two event subsets A and B, the conditional probability P A B[ ] is given by

P A B[ ]=
P A ∩ B[ ]

P B[ ]
Though we will end our discussion of conditional probabilities here, they occupy a

central position in the machinery of probability theory and being able to manipulate them

is essential to further study in the field.

After this somewhat rushed introduction to probability, you are now equipped to

consider what may be the most important thought-experiment in the history of probability

theory.  Statements that grandiose always sound a bit intimidating, but fear not-one of the

most charming aspects of this experiment is its simplicity.  All that it involves is

considering the probability that we get k heads in n flips of a coin.5  However, for

generality, we will consider a coin that may be loaded (i.e. unfair).  By now you should

immediately recognize this means that we can not use our "ratio of sample points"

method because all outcomes in the state space are no longer equiprobable.  However,

outcomes of coin-flipping experiments are an excellent examples of independent trials,

and therefore we can just multiply probabilities. Before progressing, lets take some time

to formulate this problem in a bit more mathematically precise way.  The experiment has

two outcomes per flip6, with the probability of heads=p and the probability of tails=q=(1-

p).  Furthermore, we will be flipping our coin n times, so each sample point is a list of the

n outcomes of these flips.  Therefore, there are 2n sample points in the sample space (not

all of which are equiprobable if p≠ q).  Since the outcomes of each flip are independent,

we can just multiply the probabilities for these two outcomes, and get
                (4)                         P X = k[ ] = pkqn−k = pk (1 − p)n −k

                                                
5 Where n and k are arbitrary positive integers with k≤ n.
6Whether coin flipping or not, any experiment consisting of repeated, independent trials which have only
two outcomes per trial and where the probabilities of these two outcomes are constant (over the course of
the experiment) is called a Bernoulli trial.



9

The bad news is that this probability is dramatically less than the true probability. What

have we done wrong?  Recall that the sample points are lists of the outcomes of the n

flips.  Since order matters in a list, the results (hhhtth) and (hhthth) would represent two

distinct outcomes (and therefore sample points), even though they have the same number

of heads and tails.  Therefore, the reason our calculation of the probability above is wrong

is that we have not taken into account the fact that there are many different sample points

included in the subset corresponding to obtaining k heads in n flips.  Therefore, we need

to multiply the probability above by the number of ways there are to get k heads in n flips

(which is equivalent to the number of sample points in our event set).

Now we must confront a difficulty.  We could count these outcomes by writing

out every sample point (sequence of outcomes) for the flips, and then count those that

have k heads, but this gets practically impossible for even a modest number of flips

(remember the number of points in the sample space is 2n).  However, we can proceed by

making use of some results from a field of mathematics called combinatorics.   Looking

at the problem somewhat differently, we are asking "how many different arrangements

(mathematicians call them permutations) of k objects of one kind (heads) and n-k objects

of another kind (tails) can we achieve"?  The important point here is that we must

consider each of the n flips as distinct, rather than just recording whether we got a head or

a tail.  To make this explicit, you might imagine that we have numbered every flip in

addition to recording the outcome.  This means that we have n choices for the first

position, since any one of the n results can be placed in that position.  However, for the

next choice, we have only (n-1) possibilities, and for the subsequent choice (n-2), etc.,

since every choice depletes our "pool" of subsequent choices by one.   Therefore there are

n!=(n)(n-1)(n-2)...(1) permutations of n distinguishable objects.7  However, consider the
two permutations (h1t2t3h4h5) and (h4t3t2h1h5), where the subscript numbers indicate

the numbered outcomes discussed above.  From a permutation standpoint these are

distinct outcomes, but for our purposes they are identical, since they both represent the

sequence (htthh).  Therefore, we have overcounted the number of distinct sequences

because we have considered every outcome (every head and every tail) as distinguishable.

Since we are only concerned with how many sequences of k heads and n-k tails there are,

without regard to which head or which tail we are talking about, we need to divide n! by

the number of ways that we can switch around all of the numbered heads and tails and

still preserve the sequence.  We now know that for k heads, there are k! permutations, and

likewise (n-k)! permutations for the tails.  Therefore, there are

                                                
7 Products of the form (n)(n-1)(n-2)(n-3)...(1) are called factorials.
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                (5)                                  
n

k

 
 
  

 
=

n!

k( )! n − k( )!
different sequences of k heads and (n-k) tails.  In combinatorial parlance, these distinct

sequences  with which we are concerned are called combinations, to distinguish them

from the aforementioned permutations.  This means that the true probability is

               (6)                P X = k[ ] =
n

k

 
 
  

 
pkqn −k =

n

k

 
 
  

 
pk(1− p)n− k

The expression above is a venerated distribution in discrete probability.  It is

called the binomial distribution, and it crops up so frequently in such diverse applications

that we need no further justification for emphasizing it.  However, in addition to being

important in its own regard, the binomial distribution also marks a critical juncture in the

development of probability theory.  To see why, consider the presence of the factorial

terms in the binomial coefficient.  They are problematic since these terms grow rapidly as

n increases, making calculation of the binomial coefficient challenging (especially in a

pre-computer era) for n greater than 10 or so.  Therefore, rather than explicitly evaluating

this expression if n is large, we would like to find some function which closely

approximates the binomial distribution when n is large.  In addition to closely

approximating the binomial distribution, this function may be continuous (for

convenience) and should be valid within a wide range of values for p (the probability of

"success" in our Bernoulli trial).  Unfortunately, there is no single function which

satisfies the last two of these criteria, but we can find a set of two functions (one

continuous and one discrete) that satisfy all of these criteria.  These functions are the

normal (Gaussian) and Poisson distributions (respectively), and we will shortly turn our

attention to both.

However, before moving on to discuss these distributions, we should take some

time to briefly discuss a new idea that was introduced with the binomial distribution.

Recall that we were concerned with calculating the probability of getting k heads in n

flips of a coin.  Though there was a subset of sample points which satisfied this criterion,

we needed to recognize how the variable "get k heads in n trials" depended on these

sample points.  Similarly, we might have discussed the probability that I make $5 if I

make $0.50 on each head and the coin is tossed n times.  While this quantity depends on

the outcomes of the flips (sample points), it is not one of them.  Therefore, we have

introduced the idea of a quantity which may be regarded as a function of the sample

points, where the sample points act as the independent variable.  Such a quantity is called

a random variable, and it is essential that you be familiar with this concept before we

move on to discussing various probability distributions.  To gain some practice with the
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concept, imagine some other random variables that we could use in conjunction with the

binomial distribution.  Hopefully, you will appreciate that there are an infinite number of

them, and therefore you should expect that most applications of probability theory to real

life involve dealing directly with random variables rather than sample points.

Having introduced the idea of approximating the binomial distribution with two

distributions, each of which is applicable in a different regime of the value of p, lets

consider the case where p is small (p≤0.1).  First, let us perform the substitution λ=np.8

The binomial distribution then becomes,

                (7)                      P X = k[ ] =
n

k

 
 
  

 
λ
n

 
 

 
 

k

1−
λ
n

 
 

 
 

n− k

Now, consider the case where n grows to infinity and p shrinks to zero.  Hopefully you

appreciate the utility of the substitution that we made above, since we can force n to grow

and p to shrink such that λ=np remains constant.  This is nice since nothing in the above

expression will "blow up" for large n and/or small p.  In this limit9 we get,

                 (8)                        f k( ) =
λke− λ

k!
  for k=0,1,2,3,...

This expression is the Poisson distribution, and is useful in the situations where the

probability of an occurrence is small and the number of "trials" (n) is large.  For example,

we might consider the probability of k adverse reactions to a test drug in a given sample

of the population or the probability of registering k complaints about a particular product

in a 1-hour period or the probability of finding k point mutations in a given stretch of

nucleotides. Though the Poisson distribution is essential to application and you will

doubtless see it again, we will leave it now to discuss the other binomial-approximating

continuous distribution.

If the probability of success in a Bernoulli trial is not sufficiently small to justify

the assumptions that went into the derivation of the Poisson distribution, then we may

derive an alternative approximating distribution.  It can be shown that10 this distribution

is continuous and given by

                (9)                          f X( ) =
1

σ 2π
e

−
1

2

X− µ( )
σ

 

 
 
 

 

 
 
 

2

  for −∞ < X < ∞

                                                
8  The value of λ, called the parameter of a Poisson distribution, is required before you can calculate
probabilities using this distribution.  Often times, λ must be empirically determined.
9 I will omit the detailed derivation, but for the adventurous among you, keep in mind the dual limits and

note that (1-λ/n)n converges to e-λ for large n.
10 It can be shown, but isn’t, because the detailed proof of the normal distribution as a limit of the binomial
distribution is rather involved.  If you are interested in further reading on this derivation, you should start
with the Local and DeMoivre-Laplace limit theorems.
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This is the normal (or Gaussian) distribution.  You are already familiar with this

distribution from course grading (as well as much else), and it looms over probability

theory as the single most important continuous distribution in applications.  It is so

significant that it can be proven that every distribution approaches a normal distribution

under suitable limits.  11

As where the Poisson distribution was characterized by a single parameter, λ,  the

normal distribution is characterized by two quantities; the mean  µ and the variance σ 2 .

The mean is just a generalization of the notion of an average, whereby we weight every

value that the random variable (r.v.) can attain by the probability that this particular value

is realized.12  In other words,

              (10)                                   µ = xi
i =1

n

∑ P X = xi[ ]
where xi  are all of the values that the r.v. can attain and P X = xi[ ] is the probability that

the r.v. achieves a value xi .  In addition, you should verify that in the case that all values

of the are equiprobable, the mean reduces to the arithmetic average.  Therefore, the mean

is just a weighted average.  Furthermore,  the mean is often called a "measure of

location", which makes sense given that the normal distribution is centered around the

mean.  However, for non-symmetric  distributions, there are two other measures of

location that become non-redundant with the mean.  These alternative measures of

location are the median and the mode.  The median is the value of the r. v. where there

are equal numbers of observations with values greater and less than the median.  The

mode is the most frequently observed single value of the r. v.  These are of little

relevance to the normal distribution, but are often of significant value when dealing with

data for statistical purposes.

Whereas the mean provides information concerning the location of the

distribution, the variance provides information concerning the "spread" of the distribution

about the mean.   In particular,

            (11)                          σ 2 = xi − µ( )2

i=1

n

∑ P X = xi[ ]
You may be more familiar with the standard deviation, which is related to the variance as

below.
            (12)                               σ = std.dev. = σ 2

                                                
11 This is a hand-waving version of the Central Limit Theorem, which says that the distribution of the sum
of independent, identically distributed (i.i.d) random variables (r.v.) will approach a normal distribution in
the limit of an infinite number of i.i.d r.vs.
12  Particularly in physical applications, the mean of a r. v. is called an expectation value.
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Thus, the standard deviation (std. dev.) is just the average difference between the mean

and the observed values of the r.v.  Therefore, if we are considering a set of observations

that we believe are normally distributed, then the std. dev. (or the variance) provide a

measure of the variability of observations.

Having introduced the normal distribution, we have yet to deal with a problem

created by our shift from the discrete binomial distribution to the continuous normal

distribution.  Specifically, while we can speak of the probability that a r.v. equals a

particular value with a discrete distribution  over a finite sample space, we can not do so

when dealing with a continuous distribution.  This is because a continuous distribution

has an infinite number of sample points, and therefore the probability that one value is

realized is always zero (because you have one point in your event set and an infinite

number in your sample space).  Therefore, when dealing with continuous distributions,

we can only speak of the probability that the r.v. takes on a value in a certain range.

Therefore, taking the normal distribution as an example,

               (13)  P a ≤ X ≤ b[ ]= f (X) dX =
a

b

∫
1

σ 2π
e

−
1

2

x − µ( )
σ

 

 
 
 

 

 
 
 

2

a

b

∫ dX = F b( )− F a( )

We see that to determine the probability that the r. v. falls within a range we must

integrate these distributions.  The functions F(a) and F(b) are called cumulative

distribution functions, and are just integrated probability distributions13.  The function

f(X), which we have thus far called a probability distribution, is more properly called a

probability density.  This name is suggestive of an analogous shift from a discrete to a

continuous treatment of mass in physics.  For a small number of particles, we can treat

matter as comprised of discrete mass points.  For larger numbers of particles, we abandon

this approach in favor of describing matter using a continuous function called a mass

density.  Similarly, we describe continuous probability distributions using probability

density functions.  To extend the aforementioned definitions of mean and variance to the

continuous case,

                (14)                        

µ = X f X( )
−∞

∞

∫ dX

σ 2 = µ − X( )2
f X( )dX

−∞

∞

∫
These expressions look very similar to expressions for the center of mass and moment of

inertia for continuous mass distributions from physics.   You now know that this not

coincidental.

                                                
13  Cumulative distribution functions are of the general form
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We have covered enough probability theory at this point to begin our discussion

of statistics.  Probability and statistics are complementary approaches to the same

problem of describing phenomena which are recalcitrant to deterministic treatment.

Probability theory asks "given a model (probabilistic) of this phenomena, what can be

said about the data that I might expect from experiments (or observations) performed on

this system"?  Statistics, on the other hand, asks "given data generated from experiments

(or observations) on this system, what can I say about a model for this phenomenon"?

Hopefully, you appreciate the close kinship of these two fields of study and are

consequently full of forgiveness for the preceding 12 pages of  introductory probability

theory.

Statistics is a big field, and therefore we will be able to address only one small

topic within the space of these notes.   This is meant both as an apology and

encouragement, since there is much more to statistics and you should be familiar with

much of it for future work in biology.  Apologies aside, the topic that will occupy our

attention here is that of hypothesis testing.  The name is rather self-explanatory, but the

core idea is that we formulate some hypothesis about a population, take a sample of this

population, and use the resulting characteristics of this sample to determine the

probability that our hypothesis is correct.  The hypothesis that we are testing is called the

null hypothesis.  To test this hypothesis, we take a sample of the population and decide on

a test statistic.  The test statistic quantifies the agreement between the hypothetical

characteristic of the population and the observed characteristic of the sample.  Lastly, you

compute the probability that your test statistic would have at least the observed value if

your hypothesis (the null hypothesis) is correct.  The probability is often called a p-value,

and if it is below a pre-determined cutoff (usually either 0.05 or 0.01), you decide to

reject the null hypothesis.  In rejecting the null hypothesis, you are saying that the

difference between the hypothesized characteristic of the population and your sample

characteristic is too large to be due to "random" fluctuation, and therefore something else

that is not accounted for by your null hypothesis must be at work.

To make all this a bit more concrete, lets consider an example.  Suppose you are

interested in determining whether a biotech. company is being honest about the activity

of an enzyme they  are selling.  You purchase some enzyme, remove n aliquots and assay

each aliquot for activity.  The company claims that their enzyme activity is µ units/ml.

Therefore, your null hypothesis is that  the enzyme’s mean activity is µ units/ml, and is

normally distributed about this mean.  Therefore, your test statistic in this case is
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            (15)                                   Zobs =
X − µ( )
σ

n
 
 

 
 

Where X  is the sample mean, and σ  is the sample standard deviation.

Essentially, we can view the test statistic as a r.v. which we assume is normally

distributed.14  Therefore,  given a computed test statistic, we can use the normal

distribution to calculate the probability that the null hypothesis is true. We will do this by

computing the probability that the test statistic assumes a value at least as large as that

observed.  In other words,

             (16)                     p-value=
1

2π
e

−
z2

2

−∞

Zobs

∫ dz = F z( )

If the p-value is less than a given cutoff (0.05 or 0.01), we conclude that it is improbable

that the test statistic would assume such a large value and therefore reject the null

hypothesis.  In the case of our example, we may find a p-value<0.01, and therefore reject

the company’s claim concerning the activity of their enzyme.  We should note in passing

that the details of computing the p-value can vary.  There exist two distinct methods of

computation; the one-tailed or two-tailed tests.  They differ only insofar as the latter test

explicitly capitalizes on the symmetry of the standard normal distribution, and

consequently, the details of the implementation are slightly different.  You need not be

overly concerned about this.

In closing our discussion of hypothesis testing, you should note that a test statistic

can be constructed to test a wide variety of hypotheses.  For example, we could construct

a test statistic to determine whether the observed proportion of defective products in a

sample is significantly different that the quoted defective rate.  Many other such

applications exist, and consequently hypothesis testing is among the most commonly

employed of statistical methods.
With all this talk about probability and statistics, you may be fearing that

deterministic mathematics is totally irrelevant to bioinformatics.  This is most certainly

not the case.   In fact, a mathematical object of great utility in this field is the vector.  This

is because vectors provide a uniquely powerful way to represent and manipulate large

quantities of information.  For example, the structure of a biomacromolecule may be

                                                

14 i.e. with probability density function  f z( ) =
1

2π
e

−
z2

2  .  In passing, r.vs with probability density

functions like this are said to the distributed according to the standard normal (mean=0, variance=1).  By
performing a straightforward substitution, all normally distributed r.vs can be transformed to a standard
normal distribution.  This substitution is frequently called the z-transformation.



16

thought of as a 3N-dimensional vector, where N is the number of atoms in the structure.

In what follows, we will review some of the most important aspects of vector algebra.

As you recall from physics, vectors are objects that have both magnitude and

direction, and are many times represented by arrows to indicate this fact.  In doing so, we

should see that we can also represent this vector by its components along the x,y and z

axes Therefore, in general we have

              (17)       

r 
V = V

x
ˆ i + V

y
ˆ j + V

z
ˆ k =

r 
V cosα +

r 
V cosβ +

r 
V cosγ

Where   

r 
V  represents the length (also called magnitude or norm) of our vector, ˆ i , ˆ j , ˆ k 

are the unit vectors (vectors of length=1) that point in along the x, y and z axes

respectively, and α,β,γ  are the angles between the vector and the x, y, and z axes,

respectively (as below).

The above illustration shows us that the x,y, and z components of the vector are

equivalent to the projection of this vector onto these axes.  Since these projections are just

the magnitude of the vector multiplied by the cosine of the angle between the vector and

the axes, we realize that if we know the length of the vector and the angle it makes to

each axis, then we know in what direction to draw the vector.  Because these angles tell

us in what direction to draw the vector, the cosines of these angles are called the direction

cosines.  They arise frequently and you should keep in mind that the direction cosines are

just another way of representing the components of the vector under consideration.

Before we leave the topic of direction cosines, consider the expression for the magnitude

of a vector, shown below

            (18)                                 
  

r 
V = V

x

2 + V
y

2 + V
z

2( )
This implies
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            (19)                             1 = cos 2 α + cos2 β + cos2 γ
which you should verify.

Just as we can (uniquely) specify a vector by listing its components, we can also

operate on vectors via operating on their components.  For example, you learned in

physics that vectors can be added geometrically using the “head-to-tail” rule for vector

addition.  Now, if what we just said about operating on vector component-wise is true, it

should provide us with the same answer for addition of vectors as does “head-to-tail”

addition.  We verify this geometrically below

Therefore   

r 
A +

r 
B = A

x
+ B

x( )ˆ i + A
y

+ B
y( )ˆ j + A

z
+ B

z
( )ˆ k .  We can see that as

the number of vectors increases, it becomes much more difficult to draw them all out and

do “head-to-tail” addition.  In contrast, adding 10 numbers is not much harder than is

adding 2.   Therefore, the great advantage of component-wise addition of vectors is that it

allows us to reduce the potentially tedious problem of adding arrows to the much easier

one of adding numbers.

Having conquered vector addition, you may be tempted to apply similar

methodology to vector multiplication.  Unfortunately, multiplying vectors is trickier than

adding them, since there are two ways of forming vector products.  One way is very

similar to our component-wise method of vector addition, and it produces a number

(scalar).  Therefore, this method of vector multiplication is called the scalar (or dot)

product.  The other way of multiplying vectors is very different from straightforward

component-wise operation and produces another vector.  Consequently, it is called the

vector (or cross) product.  In what follows, we will take some time to discuss each kind of

vector product and its significance.

The dot product of two vectors is given by the following relation
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          (20)      
  

r 
A •

r 
B = A

x
B

x( )+ A
y
B

y( )+ A
z
B

z
( )=

r 
A 

r 
B cosθ

Where θ is the angle between these two vectors.   The first equality above is useful

primarily when actually computing a dot product.  The second equality is useful when

manipulating vector relations (although it is of considerable computational utility as

well).  The cosine term in the above suggests a geometric interpretation of the dot product

very similar to that given for the direction cosines.  Namely,  this equality tells us that the

dot product of two vectors is the product of the vector magnitudes projected along the

direction of one of the vectors.  Furthermore, the cosine term allows us to conclude that

parallel vectors produce maximal dot products and perpendicular vectors produce zero

dot products.  Perpendicular vectors are called orthogonal, and are of very general

importance.  You will see them again in linear algebra, but with a somewhat less

geometric interpretation.  As a closing comment on the many-faceted wonder of the dot

product,  you should note that, by virtue of the first equality, the dot product is

commutative (order of multiplication does not matter).  This is a direct consequence of

the commutativity of scalar multiplication.

In contrast to the appealing simplicity of component-wise multiplication that

characterizes the dot product, the cross product is a less straightforward matter.  We

define the cross product as

               (21)      

  

r 
C =

r 
A ×

r 
B =

ˆ i ˆ j ˆ k 

A
x

A
y

A
z

B
x

B
y

B
z

∴

r 
C = A

y
B

z
− A

z
B

y( )̂  i + A
z
B

x
− A

x
B

z( )ˆ j + A
x
B

y
− A

y
B

x( )ˆ k 

where the bars on either side of the matrix indicate that we are to find the determinant of

the matrix inside.  Although we are dealing with a topic that more properly belongs in a

discussion of linear algebra, lets discuss how to compute the determinant of a matrix.

For most “by hand” computations, a determinant is most easily found by using the

so-called “expansion by minors” approach.  This is done as shown below
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               (22)        

a b c

d e f

g h i

= a
e f

h i
− b

d f

g i
+ c

d e

g h

This should seem less than helpful, since we have just broken down one determinant into

three.  However, finding the determinant of a 2x2 matrix is rather easy.  We just multiply

the entries lying on “left-to-right” diagonal and subtract the product of the entries lying

on the “right-to-left” diagonal.  In other words,

              (23)                                          
a b

c d
= ad − bc

Knowing this, we can introduce a convenient mnemonic device for the computing the

determinant of a 3x3 matrix, which we can represent as below

             (24)                               

a b c

d e f

g h i

= a
e f

h i

a b c

d e f

g h i

= −b
d f

g i

a b c

d e f

g h i

= c
d e

g h

Knowing this, you should expand the determinant of the matrix in (21) and verify that

you do indeed get the vector indicated in the second equality in (21).

Now that you’re comfortable with how to compute the cross product, a few

geometrical considerations are in order.  First, the cross product always produces a vector

which is perpendicular (orthogonal) to both of the vectors “crossed” in the cross product,

as shown below.
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In addition, the definition of the cross product in (21) leads us to conclude that the cross

product, unlike the dot product, in not commutative.  In fact, if we reverse the order of the

vectors in (21) and compute the result, we get a vector which points in the opposite

direction as the original product.  More succinctly,

              (25)                              
  

r 
A ×

r 
B = −

r 
B ×

r 
A ( )

This property is called anticommutativity. The direction of the resulting vector can be

easily remembered using the right-hand rule.  The rule says that the product vector will

point in the same direction as the thumb on your right hand if you align your palm with

the first vector and curl your fingers toward the second vector in the cross product.  You

probably were introduced to this in physics.  In concluding our discussion of the cross

product, you should be aware of the following relation between the magnitude of the

product vector and the magnitudes of the vectors being crossed.  Namely,

                (26)                                 
  

r 
C =

r 
A 

r 
B sinθ

You will not make as much use of this as you will (20), but (26) is still worth

remembering.

Furthermore, just as we can multiply more than two scalars, we can also multiply

more than two vectors.  However, always keep in mind that the two ways of multiplying

vectors (dot and cross product) that we have just discussed are only defined for vectors.

So, while we can make the triple product 
  

r 
D =

r 
A •

r 
B ×

r 
C ( ), we can not make the

triple product 
  

r 
D =

r 
A ×

r 
B •

r 
C ( ), since the term in parenthesis is a scalar, and the cross

product is only defined between two vectors.  Because this requirement removes the

potential ambiguity in the triple product, parenthesis are usually omitted.  The triple

product you are most likely to encounter in future studies is the scalar triple product,

given by

               (27)                                       V =
r 
A •

r 
B ×

r 
C 
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The choice of V  to represent this scalar triple product is suggestive.  In fact, the scalar

triple product is often used to calculate volumes of parallelepipeds.  A biophysically

relevant example would be the volume of the unit cell of a crystal, which is a very

important parameter in crystallography.  However, this is only one of many applications

of vectors to biophysics, so please make sure that you are comfortable with them before

you continue.

Having treated vectors via their components, it will come as no surprise to you

that we can further “economize” our treatment of vectors by representing them as lists of

components.  For example, we could represent the vector   
r 
V  in any of the three ways

shown below.

             (28)                 

  

r 
V = Vx

ˆ i +Vy
ˆ j + Vz

ˆ k = Vx Vy Vz[ ]=
Vx

Vy

Vz

 

 

 
 

 

 

 
 

The last two quantities are examples of a row vector and a column vector, respectively.

This may seem like dry exposition on bookkeeping methods for vectors, but it allows us

to achieve a great simplification in how we handle vectors, to which we turn our attention

now.

Consider the vector shown below, which is represented in two coordinate systems,

one rotated with respect to the other by φ.  The problem is to provide expressions for the

components of the vector in the new (rotated) coordinate system in terms of its old

components.

You  will need to use the sum formulas from trigonometry to do this problem (and might

try it as an exercise). In doing so, you will find the following;
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             (29)                              
Vx

’ = Vx cosφ + Vy sinφ

Vy
’ = −Vx sinφ + Vy cosφ

As you have already come to appreciate, this problem is somewhat tedious if solved in

the manner suggested above.  The great attraction of representing vectors as row or

column vectors is that we can operate on these vectors using matrices.  However, to do

so, we will first need to discuss the anatomy and mechanics of matrices and their

manipulation.

A matrix is simply an array of numbers, which are called entries.  The entries are

organized amongst rows and columns. As you have probably already anticipated,

columns run up-down and rows run side-to-side.  Therefore, we can uniquely specify an

entry in the matrix by providing its row and column index.  A generic matrix is shown

below

              (30)                           A =
a11 a12 a13

a21 a22 a23

a31 a32 a33

 

 

 
 

 

 

 
 

The above matrix is an example of a 3x3 matrix, where, by convention, the first number

refers to the number of rows and the second to the number of columns.  Matrices may

come in any size, 1x3 ( 3-dimensional row vector), 3x1 (3-dimensional column vector),

3x3, 4x2, 100x1734, etc.

We can add matrices entry by entry, as below;

(31)

C = A + B =
a11 a12 a13

a21 a22 a23

a31 a32 a33

 

 

 
 

 

 

 
 

+
b11 b12 b13

b21 b22 b23

b31 b32 b33

 

 

 
 

 

 

 
 

=
a11 + b11 a12 + b12 a31 + b13

a21 + b21 a22 + b22 a23 + b23

a31 + b31 a32 + b32 a33 + b33

 

 

 
 

 

 

 
 

Note that this is exactly analogous to component-wise addition of vectors.

Continuing this analogy with vector algebra, while we can add (and subtract)

matrices easily, multiplication is somewhat trickier. In brief, matrix multiplication obeys

the following rule

Matrix Multiplication

Given two matrices A  (which is MxN)and B  (which is NxP), their product can be

found as follows:
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The element cij is the given by cij = aikbkj
k=1

N

∑ .  The  product matrix C  is  MxP.  Note

that matrix multiplication is not commutative (in general).

All that this definition is saying is that the element cij is just the ith  row of A  multiplied

by the jth  column of B  in a component-wise fashion and then summed.  You might

recognize that this is similar to the method of computing the dot product of two vectors.

As it turns out, there is an excellent reason for this similarity because this row-by-column

method of matrix multiplication is perfectly equivalent to the dot product.  To verify this,

choose two vectors and compute their dot product.  Next, arrange the components of first

vector as a row vector, and the second as a column vector.  Now, perform matrix

multiplication as defined above and verify that the results are identical.  In linear algebra,

this is called the inner product.

Having defined matrix multiplication, we can now re-inspect (29) and recognize

that this is equivalent to the matrix equation

        (32)                                
Vx

’

Vy
’

 

  
 

  =
cosφ sinφ
−sinφ cosφ

 
  

 
  

Vx

Vy

 

  
 

  

The type of matrix shown in (32) is among the most useful matrices you will ever

encounter.  It is called a rotation matrix, and given the example that produced it, you

should immediately appreciate why.  These matrices are used in every imaginable

application, and being comfortable with them is critically important.

Now that you’ve seen a rotation matrix in two dimensions, we will generalize this

result to three dimensions.  The key to doing this is to imagine rotating a Cartesian (3-D)

coordinate system about one of its three orthogonal axes, as below.

This is equivalent to rotating the xy plane through an angle φ while leaving z unchanged.

The three dimensional rotation matrix for this operation is

           (33)                               Rz =
cosφ sinφ 0

−sinφ cosφ 0

0 0 1

 

 

 
 

 

 

 
 
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Note that, in matrices of this sort (in a Cartesian basis, to be precise), the first column

represents the x-axis, the second the y and the third the z-axis.  Here, we are assuming

that we are working in a column space.

Now, we could describe an arbitrary three dimensional rotation matrix by

considering the consecutive rotations of the coordinate system around z, x, and the “new”

z-axis (new in that its orientation has changed with respect to its original position).  Such

matrices are necessary to describe the orientations of rigid bodies in space relative to

some external coordinate system.  Therefore, in matrix notation,

            (34)

R = RA RB RC =
cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 

 

 
 

 

 

 
 

1 0 0

0 cosϖ sinϖ
0 −sinϖ cosω

 

 

 
 

 

 

 
 

cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 

 

 
 

 

 

 
 

The angles through which we are rotating the coordinates are called the Euler angles.

However, two points about the above should be hastily made.  First, since matrix

multiplication is not commutative (order matters), the order that you perform these

rotations is very important.  Nearly every field that uses Euler angles has a different

convention for order of rotations, so we will not waste space here discussing them all.   In

addition, this topic is among the most non-intuitive you are likely to encounter with any

regularity.  Therefore, if you’re interested, you should curl up with some classical

mechanics textbook and devote a hour or so to serious study.   Lastly, we should note that

we have just scratched the surface of the elegant field of linear algebra, which finds no

end of application in every field of science.  It is mandatory that you master elementary

linear algebra in order to fully enjoy the mass of biophysically and bioinformatically

relevant mathematics.


