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Goal:
Model

Proteins
and

Nucleic
Acids

as Real
Physical

Molecules
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Overview:
Methods for

the Generation and Analysis of
Macromolecular Simulations

1 Simulation Methods
◊ Potential Functions
◊ Minimization
◊ Molecular Dynamics
◊ Monte Carlo
◊ Simulated Annealing

2 Types of Analysis
◊ liquids: RDFs, Diffusion constants
◊ proteins: RMS, Volumes, Surfaces

• Established
Techniques
(chemisty, biology,
physics)

• Focus on simple
systems first (liquids).
Then explain how
extended to proteins.
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Potential
Functions

• Each atom is a
point mass
(m and x)

• Atoms interact
through a variety
of forces

• Also,
for proteins there
some special
pseudo-forces:
torsions and
improper
torsions,
H-bonds.
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Minimization

• Particles on an “energy
landscape.” Search for
minimum energy
configuration

• Steepest descent
minimization
◊ Follow gradient of energy

straight downhill
◊ i.e. Follow the force:

step ~ F = -∇ U
so
x(t) = x(t-1) + a F/|F|

• Other methods
◊ conjugate gradient

step ~ F(t) - bF(t-1)
◊ Newton-Raphson:

using 2nd derivative, find
minimum assuming it is
parabolic

• Get stuck in local minima
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Molecular
Dynamics

• Give each atoms a velocity.
◊ If no forces, new position

of atom (at t + dt) would be
determined only by
velocity
x(t+dt) = x(t) + v dt

• Forces change the velocity,
complicating things
immensely

◊ F = dp/dt = m dv/dt
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Molecular Dynamics (cont)

• On computer make very small
steps so force is nearly constant
and velocity change can be
calculated (uniform a)

[Avg. v over ∆t] = (v + ∆v/2)

• Trivial to update positions:

• Step must be very small
◊ ∆t ~ 1fs

(atom moves 1/500
of its diameter)

◊ This is why you
need fast computers

• Actual integration
schemes slightly more
complicated
◊ Verlet (explicit half-

step)
◊ Beeman, Gear

(higher order terms
than acceleration)

∆v =
F
m

∆t

x(t + ∆t ) = x(t ) + (v + ∆v
2

)∆t

= x(t ) + v∆t +
F

2m
∆t 2
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Phase Space Walk
• Trajectories of all the particles traverses space of all possible

configuration and velocity states (phase space)

• Ergodic Assumption:
Eventually, trajectory visits every state in phase space

• Boltzmann weighting:
Throughout, trajectory samples states fairly in terms of system’s
energy levels
◊ More time in low-U than high-U states
◊ Probability of being in a

state ~ exp(-U/kT)
• Consequently, statistics (average properties) over trajectory are

thermodynamically correct
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Example
Phase
Space
Walk

X = 3X A + 3XB + 2XA +1XD

U = 6UAB + 2U A +1U D
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Monte Carlo

• Other ways than MD to
sample states fairly and
compute correctly
weighted averages?
Yes, using Monte Carlo
calculations.

• Basic Idea:
Move through states
randomly, accepting or
rejecting them so one
gets a correct
“Boltzmann weighting”

• Formalism:
◊ System described by a probability

distribution ρ(n) for it to be in
each state n

◊ Random (“Markov”) process π
operates on the system and
changes distribution amongst
states to πρ(n)

◊ At equilbrium original distribution
and  new distribution have to be
same as Boltzmann distribution

πρ (n ) = ρ (n) =
1
Z

exp
−U(n)

kT
 
 

 
 
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Monte Carlo
(cont)

• Metropolis Rule
(for specifying π )
1 Make a random move to a

particle and calculate the
energy change dU

2 dU < 0 −> accept the move
3 Otherwise, compute a

random number R
between 0 and 1:
R < ~ exp(-U/kT) −>

accept the move
otherwise −>

reject the move

• “Fun” example of MC Integration
◊ Particle in empty

box of side 2r
(energy of all states same)

◊ π = 6 x [Fraction of times
particles is within r of center]
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MC vs/+ MD

• MD usually used for proteins. Difficult to make moves
with complicated chain.

• MC often used for liquids. Can be made into a very
efficient sampler.

• Hybrid approaches (Brownian dynamics)
• Simulated Annealing. Heat simulation up to high T

then gradually cool and minimize to find global
minimum.
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Periodic Boundary Conditions

• Make
simulation
system seem
larger than it is
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Typical Systems: Water v. Argon
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Typical
Systems:

DNA +
Water
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Typical Systems: Protein + Water
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Average over simulation

• Deceptive Instantaneous Snapshots
(almost anything can happen)

• Simple thermodynamic averages
◊ Average potential energy <U>
◊ T ~ < Kinetic Energy > = ½ m < v2 >

• Some quantities fixed, some fluctuate in different
ensembles
◊ NVE protein MD (“microcanonical”)
◊ NVT liquid MC (“canonical”)
◊ NPT more like the real world
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Timescales

Motion length time

(Å) (fs)

bond vibration 0.1 10

water hindered rotation 0.5 1000

surface sidechain rotation 5 105

water diffusive motion 4 105

buried sidechain libration 0.5 105

hinge bending of chain 3 106

buried sidechain rotation 5 1013

allosteric transition 3 1013

local denaturation 7 1014

(From
McCammon &
Harvey,
Eisenberg &
Kauzmann)
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D & RMS

• Diffusion constant
◊ Measures average rate of

increase in variance of
position of the particles

◊ Suitable for liquids, not
really for proteins

D =
∆r 2

6∆t

RMS(t ) =
di (t )

i =1

N∑
N

di (t ) = R(xi (t ) − T) − xi (0)

• RMS more suitable to
proteins

o di = Difference in position of
protein atom at t from the
initial position, after structures
have been optimally rotated
translated to minimize RMS(t)

o Solution of optimal rotation
has been solved a number of
ways (Kabsch, SVD)
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Number
Density

= Number of atoms per unit volume averaged over simulation divided by
the number you expect to have in the same volume of an ideal “gas”

Spatially average over all directions gives

1D RDF =

[  Avg. Num. Neighbors at r       ]
[Expected Num. Neighbors at r ]

“at r” means contained in a thin shell of thickness dr and radius r.
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Number
Density (cont)

• Advantages: Intuitive, Relates to
scattering expts

• D/A: Not applicable to real proteins
◊ 1D RDF not structural
◊ 2D proj. only useful with "toy"

systems
• Number densities measure spatial

correlations, not packing
◊ Low value does not imply

cavities
◊ Complicated by asymmetric

molecules
◊ How things pack and fit is

property of instantaneous
structure - not average


